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Introduction and and motivation

Valdez, E.A., Xiao, Y. – 2 / 29

In insurance and financial risk modeling, practitioners may be
required to compute aggregate risk distribution for a portfolio of
correlated risks:

• pricing or premium calculation of contingent payoffs on these
multiple risks

• capital allocation among several lines of business

• analyzing diversification benefits within an enterprise

• reporting of risks to external parties, e.g. regulators

Models used to describe the correlation structure:

• multivariate distributions with correlation

• “copulas” - separates the peculiar characteristics of marginals
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The concept of distortion

Valdez, E.A., Xiao, Y. – 3 / 29

Apply a probability distortion to multivariate distributions:

• to adjust for risk and uncertainty in aggregating a portfolio of
correlated risks

• to change probability measure to price contingent claims
involving multiple risks

• a direct extension of the distortion concept in the unvariate case

Be careful in the extension because you want to preserve properties
of a copula:

• three kinds of multivariate distortion - will or will not affect the
dependence structure

In the paper, we show much more: numerous examples, multivariate
ordering of risks, integral transform with distortion
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Copulas - recipe for disaster?

Valdez, E.A., Xiao, Y. – 4 / 29

Article on Wired Magazine, 23 Feb 2009, by F. Salmon titled “Recipe
for Disaster: The Formula that Killed Wall Street”1.

• Collapse of the market on defaultable loans, collaterized debt
obligations, other credit derivatives (huge $$$’s involved!!!)

• Became popular because of Li’s pricing model: D.X. Li (2000),
On default correlation: a copula function approach, Journal of

Fixed Income, vol. 9, pp. 43-54.

• Pricing basis: Gaussian or normal copula.

1
Source: P.Embrectchs slides



A
ct

u
a
ri

a
l
S
ci

en
ce

S
em

in
a
r

-
S
p
ri

n
g

2
0
1
0

Sklar’s representation theorem

Valdez, E.A., Xiao, Y. – 5 / 29

Sklar (1959): There exists a copula function C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

where Fi is the marginal for Xi, i = 1, . . . , n.

Equivalently, we write

P(X1 ≤ x1, . . . , Xn ≤ xn) = C(P(X1 ≤ x1), . . . ,P(Xn ≤ xn)).

C need not be unique, but it is unique for continuous marginals.
Else, C is uniquely determined on RanF1 × . . .× RanFn.

In the continuous case, this unique copula can be expressed as

C(u1, . . . , un) = F (F−1

1
(u1), . . . , F

−1
n (un)),

where F−1

i are the respective quantile functions.
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Examples of (implicit) copulas

Valdez, E.A., Xiao, Y. – 6 / 29

Normal copula:

Cn
R(u) = ΦR(Φ−1(u1), . . . ,Φ

−1(un)),

where Φ is the cdf of standard univariate normal, ΦR is the joint cdf
of X ∼ Nn(0,R) with R, the correlation matrix.

The case where R = In results in independence, and R = Jn gives
comonotonicity.

t copula:
Cn

ν,R(u) = tν,R(t−1
ν (u1), . . . , t

−1
ν (un)),

where tν is the cdf of standard univariate t, tν,R is the joint cdf of
X ∼ tn(ν,0,R) with R, the correlation matrix.

The case where R = Jn gives comonotonicity, but R = In does not
result in independence.
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Simulation - normal vs t copula

Valdez, E.A., Xiao, Y. – 7 / 29
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Some problems with multivariate normal

Valdez, E.A., Xiao, Y. – 8 / 29

Some believe that there are deficiencies of the normal for multivariate
modeling in finance/insurance:

• The tails of the margins may be too thin, and hence fail to
generate some extreme values.

• As a consequence, in the multivariate sense, it fails to capture
phenomenon of joint extreme movements. Simultaneous large
values may be relatively infrequent - generally believed to lack
tail dependence.

• Too much symmetry - lack of presence of skewness. Some
financial/insurance data exhibits long tails.



A
ct

u
a
ri

a
l
S
ci

en
ce

S
em

in
a
r

-
S
p
ri

n
g

2
0
1
0

Special class: Archimedean copulas

Valdez, E.A., Xiao, Y. – 9 / 29

C is an Archimedean if it has the form

C(u1, . . . , un) = ψ−1(ψ(u1) + · · · + ψ(un)),

for some function ψ (called the generator) satisfying:

• ψ(1) = 0;

• ψ is decreasing; and

• ψ is convex.

To ensure you get a legitimate copula for higher dimensions, ψ−1

must be completely monotonic, i.e. its derivatives alternate in signs.

An important source of Archimedean generators is the inverses of the
Laplace transforms of distribution functions.

Feller (1971): A function ϕ on [0,∞] is the Laplace transform of a
cdf F if and only if ϕ is completely monotonic with ϕ(0) = 1.
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Archimedean copulas and their generators

Valdez, E.A., Xiao, Y. – 10 / 29

Family Generator ψ(t) Range of α C(u)

Independence − log(t) na
n∏

i=1

ui

Clayton t−α − 1 α > 0

[
n∑

i=1

u−α
i − n+ 1

]
−1/α

Gumbel-Hougaard (− log t)α α ≥ 1 exp

{
−

[
n∑

i=1

(− log ui)
α

]1/α
}

Frank − log

(
e−αt − 1

e−α − 1

)
α > 0 −

1

α
log


1 +

n∏
i=1

(e−αui − 1)

(e−α − 1)n−1



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Normal, t, and Clayton copulas

Valdez, E.A., Xiao, Y. – 11 / 29

Marginals: Gamma(5,1), ρ = 0.75, and ν = 3
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Review of univariate distortion

Valdez, E.A., Xiao, Y. – 12 / 29

We say g : [0, 1] → [0, 1] is a distortion function if it satisfies the
following properties:

• g(0) = 0 and g(1) = 1; and

• g is continuous and non-decreasing.

The transformation of the distribution function FX

FX∗(x) = g[FX(x)] = g ◦ FX(x)

is the df of X∗ that leads to a probability distortion of X to X∗.

Wang Transform: Here g(t) = Φ[Φ−1(t) + γ] preserves Normal and
Lognormal distributions:

• X ∼ Normal(µ, σ2) implies X∗ ∼ Normal(µ− γσ, σ2)

• X ∼ Lognormal(µ, σ2) implies X∗ ∼ Lognormal(µ− γσ, σ2)
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Some well-known distortion functions

Valdez, E.A., Xiao, Y. – 13 / 29

Functional form Inverse form Convex Concave
Distortion g(t) g−1(s) constraints constraints

Proportional hazard t1/γ sγ 0 < γ ≤ 1 γ ≥ 1

Exponential
1 − e−γt

1 − e−γ
log[1 − s(1 − e−γ ] γ < 0 γ > 0

Logarithmic
1

γ
log[1 − t(1 − eγ)]

eγt−1

eγ−1
γ < 0 γ > 0

Wang transform Φ[Φ−1(t) + γ] Φ[Φ−1(s) − γ] γ ≤ 0 γ ≥ 0

Dual-power 1 − (1 − t)γ 1 − (1 − s)1/γ γ ≤ 1 γ ≥ 1

Note: The convex/concave constraints are for the function g(t).
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Adjustment for risk

Valdez, E.A., Xiao, Y. – 14 / 29

• Wang (1996) defines premium principle based on distortion,
motivated by Yaari (1987) - an alternative to utility framework.

• For a (non-negative) risk X, the premium principle associated
with the distortion function:

πg(X) = E(X∗) =

∫
∞

0

[1 − g[FX(x)]]dx.

• The difference πg(X) − E(X) is risk premium (or adjustment
for risk), and is positive if g is convex. (Jensen’s inequality)

• Distortion can also be used to price contingent payoffs, say
h(X), associated with an underlying asset with value X. In
case of no-arbitrage, these risk-neutral (distorted) probabilities
can be derived from observable prices in the market.
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The effect of distortion

Valdez, E.A., Xiao, Y. – 15 / 29
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Parameter uncertainty

Valdez, E.A., Xiao, Y. – 16 / 29

In practice, we estimate probability distributions usually based on
limited data so that parameter uncertainty is always present.

To illustrate, consider the case where X, conditional on the risk
parameter γ, is Exponential with: FX(x|γ) = 1 − exp(−γx).

If γ has a Gamma distribution with a scale and shape parameters λ
and α, respectively, the unconditional distribution of X is a Pareto
distribution expressed as

FX(x) = 1 − (1 + λx)−α.

Indeed, one can easily derive the corresponding distortion function in
this case:

g(t) = 1 − (1 + log(1 − t)−λ/γ)−α.

Note that this distortion function is neither strictly convex nor
concave.
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Effect of distortion for parameter
uncertainty

Valdez, E.A., Xiao, Y. – 17 / 29
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Distortion of the first kind

Valdez, E.A., Xiao, Y. – 18 / 29

Let g1, . . . , gn be n distortion functions. Then the transformation of
the copula associated with X defined by

CX(u∗1, . . . , u
∗

n) = CX(g1(u1), . . . , gn(un))

induces a multivariate probability distortion of X to X
∗.

This type of a distortion leads to a simple distortion of the margins
while preserving the copula structure.

An example of this type is the multivariate extension of the Wang
transform constructed by Kijima (2006).
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Example - Multivariate Burr I

Valdez, E.A., Xiao, Y. – 19 / 29

Consider the Weibull margins

Fi(xi) = 1 − exp(−xk
i ), xi ≥ 0, k > 0,

for i = 1, . . . , n, linked with a legitimate copula, for example, a
Clayton copula defined by

CX(u1, . . . , un) =

[ n∑

i=1

u−α
i − n+ 1

]
−1/α

.

With the distortion function g(t) = 1 − (1 − log(1 − t))−γ , this leads
to Burr margins

F ∗

i (xi) = 1 − [(1 + xk
i )]

−γ , xi ≥ 0, k > 0, γ > 0.
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Distortion of the second kind

Valdez, E.A., Xiao, Y. – 20 / 29

Let g1, . . . , gn be n distortion functions. Then the transformation of
the copula associated with X defined by

Ĉ(u∗1, . . . , u
∗

n) = Ĉ(g1(u1), . . . , gn(un)),

where Ĉ is a copula function, induces a multivariate probability
distortion of X to X̂.

This leads to a simultaneous distortion of the margins and the copula
structure.

Multivariate Burr II: Similarly distort margins from Weibull to Burr,
but transform the copula structure to Gumbel-Hougaard

Ĉ(u1, . . . , un) = exp

{
−

[ n∑

i=1

(− log ui)
α

]1/α}
.

Result is yet another multivariate Burr distribution.
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Distortion of the third kind

Valdez, E.A., Xiao, Y. – 21 / 29

Let g be a distortion function with inverse g−1 that is absolutely
monotonic of order n on [0, 1]. Then the transformation of the
copula associated with X defined by

Cg(u1, . . . , un) = g−1(CX(g(u1), . . . , g(un)))

induces a distortion of X to X̃.

Cg induced by this distortion satisfies the necessary properties of a

copula and is then the copula associated with the distorted X̃ and
therefore can be written as

Cg(u1, . . . , un) = C
X̃

(u1, . . . , un).

For proof, see Morillas (2005). This leads to a synchronized
distortion of the margins and the copula structure, and a new
method of constructing new copulas from a given one.

Interesting to note that this preserves the margins; it simply distorts
the dependence structure.
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An actuarial application

Valdez, E.A., Xiao, Y. – 22 / 29

Consider an insurance portfolio of fire insurance policies where the
loss amounts vary according to:

• buildings X1

• contents X2

• loss of profits X3

To accomodate the possible large number of zeroes in each type of
loss, we use a mixture model of the form:

fk(x) =

{
pk, for x = 0
(1 − pk)fLN,k(x), for x > 0

.

LN refers to the log-normal distribution with parameters µ and σ.

It is also easy to prove that the marginal CDF for the mixture is:

Fk(x) = pk + (1 − pk)FLN,k(x), for k = 1, 2, 3.
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Marginal parameter and choice of copula

Valdez, E.A., Xiao, Y. – 23 / 29

We assume the following parameter values for the margins:

Parameter Building (X1) Contents (X2) Profits (X3)

p 0.05 0.10 0.20
µ 0.01 -0.50 -1.25
σ 0.20 1.30 1.40

For purposes of making the illustration simple, we use a Clayton
copula with

C(u1, u2, u3) =
(
u−α

1
+ u−α

2
+ u−α

3
− 2

)
−1/α

,

where the α parameter value is assumed to be 5. This translates to a
Kendall’s tau correlation of approximately 70%.
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Valuing excess of loss reinsurance

Valdez, E.A., Xiao, Y. – 24 / 29

• We apply distortion to the case where we value excess of loss
reinsurance with retention d so that our variable of interest is:

(S − d)+ = (X1 +X2 +X3 − d)+,

where S denotes the aggregate loss.

• To accommodate parameter uncertainty, we apply distortion of

the third kind based on g(t) = t1/γ with γ = 10, leading to a
re-parameterized Clayton copula

C(u1, u2, u3) =
(
u
−αγ
1

+ u
−αγ
2

+ u
−αγ
3

− 2
)
−1/αγ

.

• We then simulated values of the excess of loss and examined
the resulting distribution, with and without the distortion.
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Kernel density of the logarithm of sum

Valdez, E.A., Xiao, Y. – 25 / 29
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Summary of risk adjustments
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Excess of Loss Amount (d)
Expectation 2 5 10 20

without distortion E(S − d)+ 1.2764 0.5768 0.2372 0.0671

with distortion E(S∗ − d)+ 1.3159 0.6667 0.3387 0.1403

risk adjustment 0.0395 0.0899 0.1015 0.0732

loading percentage 3.1% 15.6% 42.8% 109.0%
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Additional materials in the paper

Valdez, E.A., Xiao, Y. – 27 / 29

You can find additional discussion of materials in the paper:

• Multivariate ordering of risks with distortion

• supermodular ordering

• Multivariate probability integral transform with distortion

• extended Genest and Rivest (2001) results
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Concluding remarks

Valdez, E.A., Xiao, Y. – 28 / 29

• Increasingly important to assess the aggregate risk distribution
of a portfolio of often correlated risks.

• Some limitations as to specifying just the correlation structures
to model the dependencies of risks - users are warned of use of
copulas.

• Copulas provide flexibility to allow modeling various dependence
structures, allowing to separate the effects of peculiar
characteristics of the margins such as thickness of tails.

• We advocate applying distortion to multivariate distributions,
and hence to copulas, as a means to adjust for risk and
uncertainty in the aggregation of portfolios of correlated risks.

• We caution practical users to understand the implications of
distortion.
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