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Introduction

The business of insurance

Risks (unexpected events): we face them everyday.

all kinds, different kinds
some just cause slight irritation, some with huge financial consequences

Insurance

a form of transferring some or all of the financial consequences
associated with uncertain events
pooling similar, independent risks forms the basis of actuarial practice
Lloyd’s of London: “the contributions of the many to the misfortunes
of the few”

Earliest form of insurance

1700 BC: Babylonian traders insured losses from shipment of goods
against catastrophe (e.g. theft)
even believed to be inscripted in the early written laws of Hammurabi’s
code
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Introduction Ratemaking and risk classification

Ratemaking and risk classification

Ratemaking (or pricing): a major task of an actuary

calculate a predetermined price in exchange for the uncertainty

probability of occurrence, timing, financial impact

Risk classification

the art and science of grouping insureds into homogeneous (similar),
independent risks

the same premium cannot be applied for all insured risks in the
portfolio

‘good risks’ may feel paying too much and leave the company; ‘bad
risks’ may favor uniform price and prefer to stay

spiral effect of having a disproportionate number of ‘bad risks’

to stay in business, you keep increasing premium
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Introduction Ratemaking and risk classification

Risk classification

Risk classification system must:

lead to fairness among insured individuals

ensure the financial soundness of the insurance company

What risk classification is not:

about predicting the experience for an individual risk: impossible and
unnecessary

should not reward or penalize certain classes of individuals at the
expense of others

See American Academy of Actuaries (AAA) Risk Classification
Statement of Principles
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Introduction Ratemaking and risk classification

* courtesy of J. Lautier
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Introduction Ratemaking and risk classification

Statistical or actuarial considerations

Constructing a risk classification system involves the selection of
classifying or rating variables which must meet certain actuarial criteria:

the rating variable must be accurate in the sense that it has a direct
impact on costs

the rating variable must meet homogeneity requirement in the sense
that the resulting expected costs within a class are reasonably similar

the rating variable must be statistically credible and reliable

E.A. Valdez (U. of Connecticut) Barcelona Summer School, Day 2 16-18 July 2012 6 / 55



Introduction a priori vs a posteriori

a priori vs a posteriori

With a priori risk classification, the actuary lacks (individual) measurable
information about the policyholder to make a more informed decision:

unable to identify all possible important factors

especially the unobservable or the unmeasurable

makes it more difficult to achieve a more homogeneous classification

With a posteriori risk classification, the actuary makes use of an
experience rating mechanism:

premiums are re-evaluated by taking into account the history of
claims of the insured

the history of claims provide additional information about the driver’s
unobservable factors
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Introduction statistical techniques

Statistical techniques of risk classification

a priori techniques:

(ordinary) linear regression, e.g. Lemaire (1985) on automobile
insurance

Generalized Linear Models (GLMs)

Generalized Additive Models (GAMs)

Generalized count distribution models and heavy-tailed regression

a posteriori techniques:

experience rating schemes: No Claim Discounts, Bonus-Malus

models for clustered data (panel data, multilevel data models)

estimation methods: likelihood-based, Bayesian

use of Markov chain models
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A priori methods

Observable data for a priori rating
For existing portfolios, insurers typically keep track of frequency and
severity data:

Policyholder file:

underwriting information about the insured and its coverage (e.g.
age, gender, policy information such as coverage, deductibles and
limitations)

Claims file:

information about claims filed to the insurer together with amounts
and payments made

For each insured i, we can write the observable data as

{Ni, Ei,yi,xi}

where Ni is the number of claims and the total period of exposure Ei
during which these claims were observed, yi = (yi1, . . . , yiNi)

′
is the vector

of individual losses, and xi is the set of potential explanatory variables.
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A priori methods pure premium

Pure premium: claim frequency and claim severity

Define the aggregate loss as

Li = yi1 + · · ·+ yiNi

so that frequency and severity data can be combined into a pure premium
as

Pi =
Li
Ei

=
Ni

Ei
× Li
Ni

= Fi × Si,

where Fi refers to the claim frequency per unit of exposure and Si is the
claim severity for a given loss.

To determine the price, some premium principle can be applied (e.g.
expected value):

π[Pi] = E[Pi] = E[Fi]× E[Si].

For each frequency and severity component, the explanatory variables will
be injected.
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A priori methods GLM

Current practice: generalized linear models
Canonical density from the exponential family:

f(y) = exp
[
yθ − ψ(θ)

φ
+ c(y, φ)

]
,

where ψ(·) and c(·) are known functions, θ and φ are the natural and scale
parameters, respectively.

Members include, but not limited to, the Normal, Poisson, Binomial and
the Gamma distributions.

May be used to model either the frequency (count) or the severity
(amount).

The following are well-known:

µ = E[Y ] = ψ
′
(θ) and Var[Y ] = φψ

′′
(θ) = φV (µ),

where the derivatives are with respect to θ and V (·) is the variance
function.
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A priori methods GLM

Claim frequency models

The Poisson distribution model:

Pr(Ni = ni) =
exp (−λi)λni

i

ni!
,

Risk classification variables can be introduced through the mean parameter

λi = Ei exp (x
′
iβ).

The Negative Binomial model:

Pr(Ni = ni) =
Γ(α+ ni)
Γ(α)ni!

(
α

λi + α

)α( λi
λi + α

)ni

,

where α = τ/µ. Risk classification variables can be built through
µi = Ei exp (x

′
iβ), or through the use of a Poisson mixture with

Ni ∼ Poi(λiθ) with λi = Ei exp (x
′
iβ) and θ ∼ Γ(τ/µ, τ/µ).
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A priori methods GLM

Illustration for claim counts

Claim counts are modeled for an automobile insurance data set with
159,947 policies.

No classification variables considered here.

No. of Claims Observed Frequency Poisson Frequency NB Frequency

0 145,683 145,141 145,690
1 12,910 13,902 12,899
2 1,234 863 1,225
3 107 39 119
4 12 1.4 12
>4 1 0.04 1

-2 log Lik. 101,668 101,314
AIC 101,670 101,318
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A priori methods generalized count

Generalized count distributions
Mixtures The NB distribution is indeed a mixture of Poisson. Other
continuous mixtures of the Poisson include the Poisson-Inverse Gaussian
(‘PIG’) distribution and the Poisson-LogNormal (‘PLN’) distribution.
Panjer and Willmot (1992).

Zero-inflated models Here, N = 0 with probability p and N has
distribution Pr(N = n|θ) with probability 1− p. This gives the following
ZI distributional specification:

PrZI(N = n|p,θ) =

{
p+ (1− p)Pr(N = 0|θ), n = 0,
(1− p)Pr(N = n|θ), n > 0.

Hurdle models For hurdle models,

PrHur(N = 0|p,θ) = p,

PrHur(N = n|p,θ) =
1− p

1− Pr(0|θ)
Pr(N = n|θ), n > 0
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A priori methods generalized count

Illustration with ZI and hurdle Poisson models

Using the same set of data earlier introduced.

Still no classification variables considered here.

No. of Claims Observed NB ZI Poisson Hurdle Poisson

0 145,683 145,690 145,692 145,683
1 12,910 12,899 12,858 13,161
2 1,234 1,225 1,295 1,030
3 107 119 96 69
4 12 12 6 4
>4 1 1 0.28 0.18

-2 log Lik. 101,314 101,326 105,910
AIC 101,318 101,330 105,914
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A priori methods risk classification

Introducing risk classification in ZI and hurdle models

The common procedure is to introduce regressor variables through the
mean parameter using for example

µi = Ei exp (x
′
iβ)

and for the zero-part, use a logistic regression of the form

pi =
exp (z

′
iγ)

1 + exp (z′
iγ)

where xi and zi are sets of regressor variables.
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A priori methods risk classification

Risk classification variables

For the automobile insurance data, description of covariates used:

Covariate Description
Vehicle Age The age of the vehicle in years.
Cubic Capacity Vehicle capacity for cars and motors.
Tonnage Vehicle capacity for trucks.
Private 1 if vehicle is used for private purpose, 0 otherwise.
CompCov 1 if cover is comprehensive, 0 otherwise.
SexIns 1 if driver is female, 0 if male.
AgeIns Age of the insured.
Experience Driving experience of the insured.
NCD 1 if there is no ‘No Claims Discount’, 0 if discount is present. This is based on

previous accident record of the policyholder. The higher the discount, the better
the prior accident record.

TLength (Exposure) Number of calendar years during which claim counts are registered.
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A priori methods risk classification

Parameter estimates for various count regression models
Poisson NB ZIP

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Regression Coefficients: Positive Part
Intercept -3.1697 (0.0621) -3.1728 (0.0635) -2.6992 (0.1311)
Sex Insured

female -0.1339 (0.022) -0.1323 (0.0226) not used
male ref. group

Age Vehicle
≤ 2 years -0.0857 (0.0195) -0.08511 (0.02) -0.0853 (0.02)
> 2 and ≤ 8 years ref. group
> 8 years -0.1325 (0.0238) -0.1327 (0.024) -0.1325 (0.0244)

Age Insured
≤ 28 years 0.3407 (0.0265) 0.3415 (0.027) 0.34 (0.0273)
> 28 years and ≤ 35 years 0.1047 (0.0203) 0.1044 (0.0209) 0.1051 (0.0208)
> 35 and ≤ 68 years ref. group
> 68 years -0.4063 (0.0882) -0.4102 (0.0897) -0.408 (0.0895)

Private Car
Yes 0.2114 (0.0542) 0.2137 (0.0554) 0.2122 (0.0554)

Capacity of Car
≤ 1500 ref. group
> 1500 0.1415 (0.0168) 0.1406 (0.0173) 0.1412 (0.0172)

Capacity of Truck
≤ 1 ref. group
> 1 0.2684 (0.0635) 0.2726 (0.065) 0.272 (0.065)

Comprehensive Cover
Yes 1.0322 (0.0321) 1.0333 (0.0327) 0.8596 (0.1201)

No Claims Discount
No 0.2985 (0.0175) 0.2991 (0.0181) 0.2999 (0.018)

Driving Experience of Insured
≤ 5 years 0.1585 (0.0251) 0.1589 (0.0259) 0.1563 (0.0258)
> 5 and ≤ 10 years 0.0699 (0.0202) 0.0702 (0.0207) 0.0695 (0.0207)
> 10 years ref. group

Extra Par. α̂ = 2.4212
Regression Coefficients: Zero Part
Intercept -0.5124 (0.301))
Comprehensive Cover

Yes -0.5325 (0.3057)
Sex Insured

female 0.3778 (0.068)
male ref. group

Summary
-2 Log Likelihood 98,326 98,161 98,167
AIC 98,356 98,191 98,199
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A priori methods risk classification

Case examples

Consider the following selection of risk profiles:

Low: a 45 years old male driver with a driving experience of 19 years
and a NCD=40. He drives a 1,166 cc Toyota Corolla that is 22 years
old. He only has a theft cover. The car is for private use.

Medium: a 43 years old male driver with a driving experience of 11
years and a NCD=50. He drives a 1,995 cc Nissan Cefiro that is 2
years old. He has a comprehensive cover and the car is for private use.

High: a 21 years old male driver with a driving experience of 3 years
and a NCD=0. He drives a 1,597 cc Nissan that is 4 years old. His
cover is comprehensive and the car is for private use.

Risk Profile Poisson distribution NB distribution ZIP distribution
Low 0.0460 0.0454 0.0455
Medium 0.1541 0.1541 0.1537
High 0.3727 0.3732 0.3715
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A priori methods risk classification

Additive regression models

Generalized additive models (GAMs) allow for more flexible relations
between the response and a set of covariates.

For example:

logµi = ηi = Exposure + β0 + β1 ∗ I(Sex = F) + β2 ∗ I(NCD = 0)
+ β3 ∗ I(Cover = C) + β4 ∗ I(Private = 1) + f1(VAge)
+ f2(VehCapCubic) + f3(Experience) + f4(AgeInsured).
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A priori methods risk classification

Additive effects in a Poisson GAM - illustration
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A priori methods severity models

Some claim severity models

Distribution Density f(y) Conditional Mean E[Y ]

Gamma
1

Γ(α)
βαyα−1e−βy

α

β
= exp (x

′
γ)

Inverse Gaussian

(
λ

2πy3

)1/2

exp
[
−λ(y − µ)2

2µ2y

]
µ = exp (x

′
γ)

Lognormal
1√

2πσy
exp

[
−1

2

(
log y − µ

σ

)2
]

exp
(
µ+

1
2
σ2

)
with µ = exp (x

′
γ)
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A priori methods severity models

Parameter estimates for various severity regression models
Gamma Inverse Gaussian Lognormal

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept 8.1515 (0.0339) 8.1543 (0.0682) 7.5756 (0.0391)
Sex Insured

female not sign. not. sign. not sign.
male

Age Vehicle
≤ 2 years ref. group
> 2 and ≤ 8 years ref. group
> 8 years -0.1075 (0.02) -0.103 (0.0428) -0.1146 (0.0229)

Age Insured
≤ 28 years not sign. not sign. not sign.
> 28 years and ≤ 35 years
> 35 and ≤ 68 years
> 68 years

Private Car
Yes 0.1376 (0.0348) 0.1355 (0.0697) 0.1443 (0.04)

Capacity of Car
≤ 1500 ref. group ref. group ref. group
> 1500 and ≤ 2000 0.174 (0.0183) 0.1724 (0.04) 0.1384 (0.021)
> 2000 0.263 (0.043) 0.2546 (0.1016) 0.1009 (0.0498)

Capacity of Truck
≤ 1 not sign. not sign. not sign.
> 1

Comprehensive Cover
Yes not sign. not sign. not sign.

No Claims Discount
No 0.0915 (0.0178) 0.0894 (0.039) 0.0982 (0.0205)

Driving Experience of Insured
≤ 5 years not sign. not sign. not sign.
> 5 and ≤ 10 years
> 10 years ref. group

Extra Par. α̂ = 0.9741 λ̂ = 887.82 σ̂ = 1.167
Summary
-2 Log Likelihood 267,224 276,576 266,633
AIC 267,238 276,590 266,647
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A priori methods severity models

Other flexible parametric models for claim severity

The cumulative distribution functions for the Burr Type XII and the GB2
distribution are given, respectively by

FBurr,Y (y) = 1−
(

β

β + yτ

)λ
, y > 0, β, λ, τ > 0,

and

FGB2,Y (y) = B

(
(y/b)a

1 + (y/b)a
; p, q

)
, y > 0, a 6= 0, b, p, q > 0,

where B(·, ·) is the incomplete Beta function.

If the available covariate information is denoted by x, it is straightforward
to allow one or more of the parameters to vary with x.

The result can be called a Burr or a GB2 regression model.
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A priori methods severity models

Fire insurance portfolio

Burr (τ) Burr (β) GB2 (b) GB2 (a)
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Intercept 0.46 (0.073) -4.921 (0.316) -8.446 (0.349) 0.049 (0.002)
Type 1 -0.327 (0.058) -2.521 (0.326) -2.5 (0.327) -0.012 (0.002)

2 -0.097 (0.06) -0.855 (0.325) -0.867 (0.317) -0.001 (0.002)
3 -0.184 (0.17) -1.167 (0.627) -1.477 (0.682) -0.003 (0.003)
4 -0.28 (0.055) -2.074 (0.303) -2.056 (0.3) -0.01 (0.002)
5 -0.091 (0.067) -0.628 (0.376) -0.651 (0.37) -0.003 (0.003)

Type 1*SI -0.049 (0.025) -0.383 (0.152) -0.384 (0.154) -0.002 (0.001)
2*SI 0.028 (0.028) 0.252 (0.174) 0.248 (0.18) 0.001 (0.001)
3*SI -0.51 (0.067) -2.098 (0.345) -2.079 (0.326) -0.006 (0.001)
4*SI -0.954 (0.464) -5.242 (1.429) -6.079 (1.626) -0.025 (0.006)
5*SI -0.074 (0.027) -0.614 (0.17) -0.598 (0.169) -0.001 (0.001)
6*SI -0.024 (0.037) -0.21 (0.223) -0.183 (0.235) -0.001 (0.001)

β 0.00023 (0.00013)
λ 0.457 (0.04) 0.444 (0.037)
τ 1.428 (0.071)
a 0.735 (0.045)
b 0.969 (0.114)
p 3.817 (0.12) 263.53 (0.099)
q 1.006 (0.12) 357 (0.132)
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A priori methods severity models

Fire insurance portfolio: residual QQ plots
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A posteriori methods

A posteriori risk classification

When constructing an a priori tariff structure, not all important risk
factors may be observable.

usually the situation for either a new policyholder or an existing one
with insufficient information

the result is lack of many important risk factors to meet the
homogeneity requirement

For a posteriori risk classification, the premiums are adjusted to
account for the available history of claims experience.

use of an experience rating mechanism - a long tradition in actuarial
science

the premise is that the claims history reveals more of the factors or
characteristics that were previously unobservable

the challenge is to optimally mix the individual claims experience and
that of the group to which the individual belongs

credibility theory - a well developed area of study in actuarial science
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A posteriori methods GLMM

Generalized linear mixed models

GLMMs are extensions to GLMs allowing for random, or subject-specific,
effects in the linear predictor.

Consider M subjects with each subject i (1 ≤ i ≤M), Ti observations are
available. Given the vector bi, the random effects for subject (or cluster) i,
the repeated measurements Yi1, . . . , YiTi are assumed independent with
density from the exponential family

f(yit|bi,β, φ) = exp
(
yitθit − ψ(θit)

φ
+ c(yit, φ)

)
, t = 1, . . . , Ti,

and the following (conditional) relations hold

µit = E[Yit|bi] = ψ
′
(θit) and Var[Yit|bi] = φψ

′′
(θit) = φV (µit)

where g(µit) = x
′
itβ + z

′
itbi.
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A posteriori methods GLMM

The random effects
Specification of the GLMM is completed by assuming that bi
(i = 1, . . . ,M) are mutually independent and identically distributed
with density

f(bi|α).
α denotes the unknown parameters in the density.

common to assume the random effects have a (multivariate) normal
distribution with zero mean and covariance matrix determined by α

dependence between observations on the same subject arises because
they share the same random effects bi.

The likelihood function for the unknown parameters is

L(β,α, φ;y) =
M∏
i=1

f(yi|α,β, φ)

=
M∏
i=1

∫ Ti∏
t=1

f(yit|bi,β, φ)f(bi|α)dbi.
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A posteriori methods GLMM

Poisson GLMM
Let Nit be the claim frequency in year t for policyholder i. Assume that,
conditional on bi, Nit follows a Poisson with mean
E[Nit|bi] = exp (x

′
itβ + bi) and that bi ∼ N(0, σ2

b ).

Straightforward calculations lead to

Var(Nit) = Var(E(Nit|bi)) + E(Var(Nit|bi))
= E(Nit)(exp (x

′
itβ)[exp (3σ2

b/2)− exp (σ2
b/2)] + 1),

and

Cov(Nit1 , Nit2) = Cov(E(Nit1 |bi),E(Nit2 |bi)) + E(Cov(Nit1 , Nit2 |bi))
= exp (x

′
it1β) exp (x

′
it2β)(exp (2σ2

b )− exp (σ2
b )).

We used the expressions for the mean and variance of a Lognormal
distribution. For the covariance we used the fact that, given the random
effect bi, Nit1 and Nit2 are independent.
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A posteriori methods GLMM

Poisson GLMM - continued

Now, if we assume that, conditional on bi, Nit follows a Poisson
distribution with mean E[Nit|bi] = exp (x

′
itβ + bi) and that

bi ∼ N(−σ2
b
2 , σ

2
b ).

This re-parameterization is commonly used in ratemaking. Indeed, we now
get

E[Nit] = E[E[Nit|bi]] = exp
(
x

′
itβ −

σ2
b

2
+
σ2
b

2

)
= exp (x

′
itβ),

and
E[Nit|bi] = exp (x

′
inβ + bi).

This specification shows that the a priori premium, given by exp (x
′
itβ), is

correct on the average.

The a posteriori correction to this premium is determined by exp (bi).
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A posteriori methods Poisson-Gamma

Poisson-Gamma model

A simple and classical random effects Poisson model for panel data is
constructed with assumptions

Nit ∼ Poi(biλit),where λit = exp (x
′
itβ) and bi ∼ Γ(α, α).

Here the posterior distribution of the random intercept bi has again a
Gamma with (conditional) mean and variance:

E[bi|Nit = nit] =
α+

∑Ti
t=1 nit

α+
∑Ti

t=1 λit
and

Var[bi|Nit = nit] =
α+

∑Ti
t=1 nit(

α+
∑Ti

t=1 λit

)2 .
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A posteriori methods Poisson-Gamma

- continued

This leads to the following a posteriori premium

E[Ni,Ti+1|Nit = nit] = λi,Ti+1

{
α+

∑Ti
t=1 nit

α+
∑Ti

t=1 λit

}
.

The above credibility premium is optimal when a quadratic loss function is

used.

The conditional expectation minimizes a mean squared error criterion.
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A posteriori methods Poisson-Gamma

Numerical illustration
Data consist of 12,893 policyholders observed during (fractions of) the
period 1993-2003. Let Nit be the number of claims registered for
policyholder i in period t. The model specification:

Nit|bi ∼ Poi(µit|bi) and µit|bi = eit exp (x
′
itβ + bi)

bi ∼ N(−σ2/2, σ2),

The a priori premium is given by

(a priori) E[Nit] = eit exp (x
′
itβ).

The a posteriori premium is given by:

(a posteriori) E[Nit|bi] = eit exp (x
′
itβ + bi).

The ratio of the two is called the theoretical Bonus-Malus Factor (BMF).
It reflects the extent to which the policyholder is rewarded or penalized for
past claims.
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A posteriori methods Poisson-Gamma

Figure 5
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Left panel: Boxplot of the conditional distribution of bi, given the history
Ni1, . . . , Nini , for a random selection of 20 policyholders. Right panel: For
the same selection of policyholders: boxplots with simulations from the a
priori (red) and a posteriori (grey) premium.
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A posteriori methods Poisson-Gamma

Figure 6
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A posteriori methods Poisson-Gamma

Figure 7
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A posteriori methods multilevel models

Multilevel models

Models that are extensions to regression whereby:

the data are generally structured in groups, and

the regression coefficients may vary according to the group.

Multilevel refers to the nested structured of the data.

Classical examples are usually derived from educational or behavioral
studies:

e.g. students ∈ classes ∈ schools ∈ communities

The basic unit of observation is the ‘level 1’ unit; then next level up is
‘level 2’ unit, and so on.

Some references for multilevel models: Gelman and Hill (2007),
Goldstein (2003), Raudenbusch and Byrk (2002), Kreft and De Leeuw
(1995).
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A posteriori methods multilevel models

A multilevel model for intercompany claim counts

We examine an intercompany database using multilevel models. We
focus analysis on claim counts.

The empirical data consists of:

financial records of automobile insurers over 9 years (1993-2001), and

policy exposure and claims experience of randomly selected 10 insurers.

The multilevel model accommodates clustering at four levels: vehicles
(v) observed over time (t) that are nested within fleets (f), with
policies issued by insurance companies (c).

More details of work are published in Antonio, Frees and Valdez
(2010).
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A posteriori methods multilevel models

Motivation to use multilevel models

Multilevel models allows us to account for variation in claims at the
individual level as well as for clustering at the company level.

intercompany data models are of interest to insurers, reinsurers, and
regulators.

It also allows us to examine the variation in claims across ‘fleet’
policies:

policies whose insurance covers more than a single vehicle e.g. taxicab
company.

possible dependence of claims of automobiles within a fleet.

In general, it allows us to assess the importance of cross-level effects.
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A posteriori methods multilevel models

Multilevel model specification
Denote by Nc,f,v,t the number of claims in period t for vehicle v insured
under fleet f by company c.

With the Poisson distribution the a priori tariff is expressed as:

Nc,f,v,t ∼ Poi(µprior
c,f,v,t)

µprior
c,f,v,t = ec,f,v,t exp (ηc,f,v,t)

ηc,f,v,t = β0 + x
′
cβ4 + x

′
cfβ3 + x

′
cfvβ2 + x

′
cfvtβ1,

where xc, xcf , xcfv and xcfvt are observable covariates.

A posteriori tariff is updated as follows:

Nc,f,v,t|bc; bc,f ; bc,f,v ∼ Poi(µc,f,v,t|bc; bc,f ; bc,f,v)

µc,f,v,t|bc; bc,f ; bc,f,v = µprior
c,f,v,t × exp (bc + bc,f + bc,f,v)

where bc, bc,f and bc,f,v are all assumed to have normal distributions.

The ratio (a posteriori premium/a priori premium) is the theoretical
Bonus-Malus Factor (BMF).
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A posteriori methods multilevel models

Other count models considered

Hierarchical Poisson models which include

Jewell’s hierarchical model

Hierarchical Negative Binomial model

Hierarchical Zero-Inflated Poisson model

Hierarchical Hurdle Poisson model
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A posteriori methods multilevel models

Figure 8
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A posteriori methods multilevel models

Comparing the BMF factors

Effects of different models on premiums for selected vehicles. Results for
hierarchical Poisson, NB and ZIP with fixed p regression models.

Vehicle Acc. Cl. Acc. Cl.
Number a priori (Exp.) a posteriori BMF Fleet (Exp.) Veh. (Exp.)

Hierarchical Poisson with random effects for vehicle, fleet and company

6645 0.08435 (0.5038) 0.1725 2.05 6 (18.5) 1 (1)
7006 0.08435 (0.5038) 0.1316 1.56 0 (1)
6500 0.08435 (0.5038) 0.1329 1.58 0 (1)

Hierarchical NB with random effects for fleet and company

6645 0.08383 (0.5038) 0.1435 1.71 6 (18.5) 1 (1)
7006 0.08383 (0.5038) 0.1435 0 (1)
6500 0.08383 (0.5038) 0.1435 0 (1)

Hierarchical ZIP with random effects for fleet and company, fixed p

6645 0.08241 (0.5038) 0.1484 1.8 6 (18.5) 1 (1)
7006 0.08241 (0.5038) 0.1484 0 (1)
6500 0.08241 (0.5038) 0.1484 0 (1)

Note: ‘Acc. Cl. Fleet’ and ‘Acc. Cl. Veh.’ are accumulated number of claims at fleet and

vehicle levels, respectively. ‘Exp.’ is exposure at year level, in parenthesis.
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A posteriori methods bonus-malus schemes

Experience rating with bonus-malus scales

A BM scale consists of a number of s+ 1 levels from 0, . . . , s. A new
driver enters the scale at a specified level, say `0.

Drivers then transition up and down the scale according to the number of
claims reported in each year.

A claim-free year results in a bonus point where the driver goes one
level down (0 being the best scale).

Claims are penalized by malus points, meaning that for each claim
filed, the driver goes up a certain number of levels. Denote the
penalty by ‘pen’.

The trajectory of a driver through the scale can be represented by a
sequence of random variables: {L1, L2, . . .} where Lk takes values in
{0, . . . , s} and represents the level occupied in the time interval (k, k + 1).
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A posteriori methods bonus-malus schemes

- continued

With Nk the number of claims reported by the insured in the period
(k − 1, k), the future level of an insured Lk is obtained from the present
level Lk−1 and the number of claims reported during the present year Nk.

This is at the heart of Markov models: the future depends on the present
and not on the past. The Lk’s obey the recursion:

Lk =

{
max (Lk−1 − 1, 0), if Nk = 0
min (Lk−1 +Nk × pen, s), if Nk ≥ 1.

With each level ` in the scale a so-called relativity r` is associated. A
policyholder who has at present a priori premium λit and is in scale `, has
to pay r` × λit.
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A posteriori methods bonus-malus schemes

An illustration of a BM scale
A simple example of bonus-malus scale is the so-called (-1/Top Scale).

This scale has 6 levels, numbered 0,1,. . . ,5:

Starting class is level 5.

Each claim-free year is rewarded by one bonus class.

When an accident is reported the policyholder is transferred to scale
5.

The following table represents these transitions:

Starting Level occupied if
level 0 ≥ 1

claim is reported

0 0 5
1 0 5
2 1 5
3 2 5
4 3 5
5 4 5
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A posteriori methods bonus-malus schemes

Transition rules and probabilities

To enable the calculation of the relativity corresponding with each
level `, some probabilistic concepts associated with BM scales have to
be introduced.

Details are in the paper.
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A posteriori methods bonus-malus schemes

Calculating the relativities

In a BM scale the relativity r` corresponding to scale ` corrects the a priori
premium: a posteriori, the policyholder will pay r`% of the a priori
premium.

The calculation of the relativities, given a priori risk characteristics, is one
of the main tasks of the actuary.

This type of calculations shows a lot of similarities with explicit
credibility-type calculations.

Following Norberg (1976) with the number of levels and transition rules
being fixed, the optimal relativity r`, corresponding to level `, is
determined by maximizing the asymptotic predictive accuracy.
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A posteriori methods bonus-malus schemes

Optimal relativities

Calculation of the r`’s is as follows:

minE[(Θ− rL)2] =
s∑
`=0

E[(Θ− r`)2|L = `]Pr[L = `]

=
s∑
`=0

∫ ∞
0

(θ − r`)2Pr[L = `|Θ = θ]dFΘ(θ)

=
∑
k

wk

∫ ∞
0

s∑
`=0

(θ − r`)2π`(λkθ)dFΘ(θ),

where Pr[Λ = λk] = wk. In the last step of the derivation conditioning is
on Λ. It is straightforward to obtain the optimal relativities by solving

∂E[(Θ− rL)2]
∂rj

= 0 with j = 0, . . . , s.
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A posteriori methods bonus-malus schemes

- continued
Alternatively,it is well-known that for a quadratic loss function, the
optimal r` = E[Θ|L = `].
This can be shown, easily, as follows:

r` = E[Θ|L = `]
= E[E[Θ|L = `,Λ]|L = `]

=
∑
k

E[Θ|L = `,Λ = λk]Pr[Λ = λk|L = `]

=
∑
k

∫ +∞

0
θ

Pr[L = `|Θ = θ,Λ = λk]wk
Pr[L = `,Λ = λk]

dFΘ(θ)
Pr[Λ = λk, L = `]

Pr[L = `]
,

where the relation

fΘ|L=`,Λ=λk
(θ|`, λk) =

Pr[L = `|Θ = θ,Λ = λk]× wk × fΘ(θ)
Pr[Λ = λk, L = `]

is used.
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A posteriori methods bonus-malus schemes

Optimal solution

The optimal relativities are given by:

r` =

∑
k

wk

∫ ∞
0

θπ`(λkθ)dFΘ(θ)

∑
k

wk

∫ ∞
0

π`(λkθ)dFΘ(θ)
.

When no a priori rating system is used, all the λk’s are equal (estimated

by λ̂) and the relativities reduce to

r` =

∫ ∞
0

θπ`(λ̂θ)dFΘ(θ)∫ ∞
0

π`(λ̂θ)dFΘ(θ)
.
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A posteriori methods bonus-malus schemes

Illustration

Using the automobile insurance data set earlier introduced wtih 159,947
policies, using the (-1/Top Scale) scheme.

Without a priori ratemaking the relativities are calculated with λ̂ = 0.1546
and Θi ∼ Γ(α, α) with α̂ = 1.4658.

Results with and without a priori rating taken into account:

r` = E[Θ|L = `]
Level ` Pr[L = `] without a priori with a priori

5 13.67% 160% 136.7%
4 10.79% 145.6% 127.7%
3 8.7% 133.9% 120.5%
2 7.14% 123.1 % 114.4%
1 5.94% 114.2% 109.2%
0 53.75% 65.47% 78.9%
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Conclusion

Concluding remarks

This paper makes several distinctions in the modeling aspects involved in
ratemaking:

a priori vs a posteriori risk classification in ratemaking

claim frequency and claim severity make up for the calculation of a
pure premium

the form of the data that may be recorded, become available to the
insurance company and are used for calibrating models:

a priori : the data usually are cross-sectional

a posteriori : the recorded data may come in various layers: multilevel
(e.g. panel, longitudinal) or other types of clustering, transitions for
bonus-malus schemes
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