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Introduction

@ In the presence of repeated observations over time, the natural
approach for data analysis is univariate longitudinal model.
(e.g. Shi and Frees, 2010 and Frees et al, 1999)

@ Repeated observations over time for many responses require
multivariate longitudinal framework and is increasing in
popularity in data analysis, e.g. biometrics.

@ There is a developing interest on multivariate longitudinal
analysis in actuarial context (e.g Shi, 2011).

@ Model accuracy, and further understanding, can be improved
by incorporating dependency among multiple responses.

@ Very often because of simplicity, response variables are
typically assumed to have multivariate normal distribution.

@
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Some literature

@ Frees, EW. (2004). Longitudinal and panel data: analysis and applications in
the social sciences. Cambridge University Press, Cambridge.

@ The random effects approach

@ Reinsel, G. (1982). Multivariate repeated-measurement or growth curve
models with multivariate random-effects covariance structure. Journal of
the American Statistical Association 77: 190-195.

@ Shah, A., N.M. Laird, and D. Schoenfeld (1997). A random effects model
with multiple characteristics with possibly missing data. Journal of the
American Statistical Association 92: 775-79.

@ Fieuws, S. and G. Verbeke (2006). Pairwise fitting of mixed models for
the joint modeling of multivariate longitudinal profiles. Biometrics 62:
424-431.

@ Seemingly unrelated regressions (SUR) approach

@ Rochon, J. (1996) Analyzing bivariate repeated measures for discrete and

continuous outcome variable. Biometrics 52: 740-50.

@ Copula approach
@ Lambert, P. and F. Vandenhende (2002). A copula based model for
multivariate non normal longitudinal data: analysis of a dose titration
safety study on a new antidepressant. Statistics in Medicine 21:

3197-3217.
@ Shi, P. (2011). Multivariate longitudinal modeling of insurance company @
expenses. Insurance: Mathematics and Economics. In Press.
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Our contribution

e Methodology

e We propose the use of a random effects model to capture
dynamic dependency and heterogeneity, and a copula function
to incorporate dependency among the response variables.

@ Multivariate longitudinal analysis for actuarial applications

o We intend to explore actuarial-related problems within
multivariate longitudinal context, and apply our proposed
methodology.

@ NOTE: Our results are very preliminary at this stage.
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Notation

Suppose we have a set of ¢ covariates associated with n subjects
collected over T' time periods for a set of m response variables.

@ Let y; 1 denote the responses from i'" individual in ' time period
on the k'" response. By letting yit = (Yit.1,Yit.2, - - -, Yit.m) for
t=1,2,...,T, we can express Y; = (¥i1, Yi2, - - -, YiT)-

@ Covariates associated with the i subject in t** time period on the
k" response can be expressed as x;; = (Xit,1, Xit,2, - - - » Xit,m)
where Xit k = (Tit1,k; Tit2, ks - - - Titp k) for k=1,2,..m.

@ We use a;j to represent the random effects component
corresponding to the i*" subject from the k'" response variable.

@ G («;x) represents the pre-specified distribution function of random
effect o;y.

@

P. Kumara and E.A. Valdez, U of Connecticut Multivariate longitudinal data analysis 6/28



Key features of our approach

@ Obviously, the extension from univariate to multivariate
longitudinal analysis.

@ Types of dependencies captured:
e the dependence structure of the response using copulas -
provides flexibility
e the intertemporal dependence within subjects and
unobservable subject-specific heterogeneity captured through
the random effects component - provides tractability

@ The marginal distribution models:
e any family of flexible enough distributions can be used
e choose family so that covariate information can be easily
incorporated

@ Other key features worth noting:
e the parametric model specification provides flexibility for
inference e.g. MLE for estimation
e model construction can accommodate both balanced and
unbalanced data - an important feature for longitudinal data
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Copula function

For arbitrary m uniform random variables on the unit interval,
copula function, C, can be uniquely defined as

Cuty...,um) = PUr <upy...,Up < up).

@ Joint distribution:

F(y17' . ;ym) = C(Fl(y1>7 e 7Fm(ym))7

where F(yx) are marginal distribution functions.

@ Joint density:
f(?/l, cee 7?/m) - C(Fl(yl)u ceey Fm(?/m)) H fk(yk))
k=1

where fi(yx) are marginal density functions and c is the
density associated with copula C.
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Multivariate joint distribution

Suppose we observe m number of response variables over T' time
periods for n subjects. Observed data for subject i is

{9125 - Yitm)s - (Wi 15 YiT25 - - - YiT,m) }
so that
Yit = (yit,l’yit,Qa---ayit,m) fori: 1,2,...,’1’L andt: 1,2,...,T

is the i*" observation in the t** time period corresponding to m
responses. The joint distribution of m response variables over time
can be expressed as

H(yi1,...,yit) = P(Yi1 <yir,..., Yir < yiT).

If {cvir} represent random effects with respect to the k" response
variable, conditional joint distribution at time £ is

H(yiti, - - i) = C(F(yz‘t,l\aﬂ), cee ;F(yit,m’aim))- @
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- continued

Conditional joint density at time ¢:

m
h(yit|cvit, - - -5 im) = c(F (Yie,1|ut), - - -, F(Yit,m|0tim)) H (it k| i)
i

where F'(y;t 1 |c,) denotes the distribution function of kth
response variable at time ¢. If w represents the set of parameters in
the model, the likelihood of the i subject is given by

L(w|(yi1,---»yiT)) = Myi1, - - -, yiT|w).
We can write
h(Yi17-~-7YiT\w)=/ / h(yi1,-- -, yiT|®t, - - - Qim)
[e75] Qim

Under independence over time for a given random effect:

h(yi1, .-, yirlaa, ... qim) = H h(yitlait, - .., im)
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- continued

T
/ / H h(yit|aﬂ, e ,Oéim)dG (Oéﬂ) s dG (Oélm)

im t 1
and from the previous slides, we have

- / / Fyaalan),. ., F(yimlain))
a1 o

m =1

m
11 Wit klein)dG (i) - - dG (cim)
k=1

Then, we can write the log likelihood function as

m

zi:log / /a”n tl_Il kl_Il c(F
X f(yit k| ir )dG (1) - - - AG (i) } @
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Choice for the marginals: the class of GB2

The model specification is flexible enough to accommodate any
marginals; however, for our purposes, we chose the class of GB2
distributions. For Y ~ GB2(a, b, p,q) with a # 0,b,p,q > 0:

@ Density function:
Ja] g~
B(p, q)(b* +y*)@w+a)

where B (-, -) is the usual Beta function.
@ Distribution function:

_ (y/0)"
Fy(?/) =B <1+(y/b)“’p’ Q>

where B (+;+,-) is the incomplete Beta function.
@ Mean:

fy(y) =

. B(p+1/a,q—1/a)
E(Y)=0 Ba) .

Multivariate longitudinal data analysis
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GB2 regression through the scale parameter
Suppose x is a vector of known covariates:
e We have: Y|x ~ GB2(a, b(x),p, q), where
b(x) =+ B'x
e Define residuals ¢; = Ve~ (@it8'xi) o that
logY; = a; + 8'x; + loge;
where ¢; ~ GB2(a, 1,p, q)).

@ PP plots can then be used for diagnostics.

@ See also McDonald (1984), McDonald and Butler (1987)

@
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Case study - global insurance demand

9% _Real growth rates
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Source: Swiss Re Economic Research & Consulting
Response variables that can be used for insurance demand:
@ Insurance density: Premiums per capita
@ Insurance penetration: Ratio of insurance premiums to GDP
@ Insurance in force: Outstanding face amount plus dividend

Some common covariates that have appeared in the literature:

@ Income @ Urbanization

@ GDP growth @ Dependency ratio
@ Inflation @ Death ratio

@ Education @ Life expectancy
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About the data set

Data set
@ 2 responses: life and non-life insurance
@ 5 predictor variables
@ 75 countries (originally, later removed 3 countries)
@ 6 years data (from year 2004 to year 2009)

Variables in the model

Dependent variables
Non-life density Premiums per capita in non-life insurance

Life density Premiums per capita in life insurance

Independent variables
GDP per capita Ratio of gross domestic product (current US dollars) to total population

Religious Percentage of Muslim population

Urbanization Percentage of urban population to total population

Death rate Percentage of death

Dependency ratio  Ratio of population over 65 to working population @

Sources: Swiss Re sigma reports through the Insurance Information Institute (Ill); World Bank
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Multiple time series plot
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Life insurance
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Multiple time series plot: removed 3 countries

After removing Ireland, Netherlands and the UK in the dataset:
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Some summary statistics

Summary statistics of variables in year 2004 to 2009:

Variable Minimum Maximum Mean | Correlation with Correlation with
Life insurance | Non-life insurance
Non-life insurance (0.74, 1.26) (2427.61, 2857.40) (386.28, 516.99) (0.75, 0.80)
Life insurance (0.49, 1.28) (3058.58, 3803.76) (503.87, 697.39) - (0.75, 0. 80)
GDP per capita (375.20, 550.90) | (56311.50, 94567.90) | (13896.60, 20524.50) (0.77, 0.82) (0.90, 0.91)
Death rate (1.50, 1.52) (16.17, 17.11) (7.87, 8.00) (0.09, 0.11) (0.06, 0.07)
Urbanization (11.92, 13.56) (100,100) (64.90, 66.29) (0.37, 0.42) (0.45, 0.46)
Religious (0.01,0.01) (99.61, 99.61) (22.12,22.12) | (-0.30, -0.29) (-0.30, -0.28)
Dependency ratio (1.25, 1.39) (29.31, 33.92) (14.89, 15.55) (0.57, 0.61) (0.57, 0.60)

Correlation matrix of covariates in year 2004 to 20009:

GDP per Death  Urbanization Religious  Dependency
capita rate ratio
GDP per capita -
Death rate (0.01, 0.03) -
Urbanization (0.49, 0.52) (-0.16, -0.15) -
Religious (-0.29, -0.25) (-0.38,-0.34) (-0.14, -0.13) -
Dependency ratio  (0.58, 0.62)  (0.53, 0.54)  (0.30, 0.32) (-0.53, -0.52)

P. Kumara and E.A. Valdez, U of Connecticut

Multivariate longitudinal data analysis

-~ @

18/28



Scatter plots of the two response variables
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Scatter plots of the ranked response variables
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Histograms of two responses from year 2004 to 2009
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Model calibration

@ Marginals: GB2 with regression on the scale parameter

@ Gaussian copula:

Cur,uz; p) = B, (ur), @ (ug))

e Natural assumption for random effect for the k" response:

o, ~ N (0, 0,%)
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Model estimates

Univariate fitted model for insurance demand
Non-life insurance density ‘ Life insurance density

Parameter Estimate Std Error  p-val \ Estimate Std Error  p-val
Covariates

GDP per capita 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000
Religious -0.0085 0.0023  0.0000 -0.0231 0.0040 0.0000
Urbanization 0.0567 0.0022 0.0000 0.0279 0.0061 0.0000
Death rate 0.0035 0.0333 0.9164
Dependency ratio (old) -0.0440 0.0297 0.1390
GB2 Marginals

a 2.5636 0.1397 0.0000 1.0427 0.0611 0.0000
p 1.3957 0.1356  0.0000 3.7321 0.5371 0.0000
q 0.5369 0.0364 0.0000 0.5081 0.0330 0.0000
Random effect

Sigmag 0.6471 0.0535 0.0000 0.8507 0.1083 0.0000

Gaussian copula:

Parameter | Estimate Std Error  p-val
P 0.5174 0.0315 0.0000 @
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PP plots of the residuals for marginal diagnostics
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PP plots of the residuals for marginal diagnostics
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Additional work intended

@ Implementing diagnostic tests for model validation.

@ Handling unbalanced and missing data.

@ ldentifying more actuarial-related problems within a
multivariate longitudinal framework.

e e.g. there is an ongoing interest in loss reserving using multiple
loss triangle.

@ Alternative approach:

Use multivariate generalized linear models for response in each
time period and use copula to capture the inter-temporal
dependence.

@ (Possible) handling discrete response variables incorporating
Jitters.

@
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- Thank you -
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