# Multivariate longitudinal data analysis for actuarial applications

Priyantha Kumara and Emiliano A. Valdez

astin/afir/iaals Mexico Colloquia 2012

Mexico City, Mexico, 1-4 October 2012



#### Outline

Introduction
Some literature

The model specification

Notation

Key features of our approach

Multivariate joint distribution

Choice for the marginals: the class of GB2

Case study
Global insurance demand

Additional work intended

Selected reference



#### Introduction

- In the presence of repeated observations over time, the natural approach for data analysis is univariate longitudinal model. (e.g. Shi and Frees, 2010 and Frees et al, 1999)
- Repeated observations over time for many responses require multivariate longitudinal framework and is increasing in popularity in data analysis, e.g. biometrics.
- There is a developing interest on multivariate longitudinal analysis in actuarial context (e.g Shi, 2011).
- Model accuracy, and further understanding, can be improved by incorporating dependency among multiple responses.
- Very often because of simplicity, response variables are typically assumed to have multivariate normal distribution.



#### Some literature

 Frees, E.W. (2004). Longitudinal and panel data: analysis and applications in the social sciences. Cambridge University Press, Cambridge.

#### • The random effects approach

- Reinsel, G. (1982). Multivariate repeated-measurement or growth curve models with multivariate random-effects covariance structure. *Journal of the American Statistical Association* 77: 190-195.
- Shah, A., N.M. Laird, and D. Schoenfeld (1997). A random effects model with multiple characteristics with possibly missing data. *Journal of the American Statistical Association* 92: 775-79.
- Fieuws, S. and G. Verbeke (2006). Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles. *Biometrics* 62: 424-431.

#### Seemingly unrelated regressions (SUR) approach

 Rochon, J. (1996) Analyzing bivariate repeated measures for discrete and continuous outcome variable. *Biometrics* 52: 740-50.

#### Copula approach

- Lambert, P. and F. Vandenhende (2002). A copula based model for multivariate non normal longitudinal data: analysis of a dose titration safety study on a new antidepressant. Statistics in Medicine 21: 3197-3217.
- Shi, P. (2011). Multivariate longitudinal modeling of insurance company expenses. *Insurance: Mathematics and Economics*. In Press.



#### Our contribution

- Methodology
  - We propose the use of a random effects model to capture dynamic dependency and heterogeneity, and a copula function to incorporate dependency among the response variables.
- Multivariate longitudinal analysis for actuarial applications
  - We intend to explore actuarial-related problems within multivariate longitudinal context, and apply our proposed methodology.
- NOTE: Our results are very preliminary at this stage.



#### Notation

Suppose we have a set of q covariates associated with n subjects collected over T time periods for a set of m response variables.

- Let  $y_{it,k}$  denote the responses from  $i^{th}$  individual in  $t^{th}$  time period on the  $k^{th}$  response. By letting  $\mathbf{y_{it}} = (y_{it,1}, y_{it,2}, \dots, y_{it,m})'$  for  $t = 1, 2, \dots, T$ , we can express  $\mathbf{Y_i} = (\mathbf{y_{i1}}, \mathbf{y_{i2}}, \dots, \mathbf{y_{iT}})$ .
- Covariates associated with the  $i^{th}$  subject in  $t^{th}$  time period on the  $k^{th}$  response can be expressed as  $\mathbf{x_{it}} = (\mathbf{x_{it,1}}, \mathbf{x_{it,2}}, \dots, \mathbf{x_{it,m}})$  where  $\mathbf{x_{it,k}} = (x_{it1,k}, x_{it2,k}, \dots, x_{itp,k})$  for  $k = 1, 2, \dots m$ .
- We use  $\alpha_{ik}$  to represent the random effects component corresponding to the  $i^{th}$  subject from the  $k^{th}$  response variable.
- $G(\alpha_{ik})$  represents the pre-specified distribution function of random effect  $\alpha_{ik}$ .



### Key features of our approach

- Obviously, the extension from univariate to multivariate longitudinal analysis.
- Types of dependencies captured:
  - the dependence structure of the response using copulas provides flexibility
  - the intertemporal dependence within subjects and unobservable subject-specific heterogeneity captured through the random effects component - provides tractability
- The marginal distribution models:
  - any family of flexible enough distributions can be used
  - choose family so that covariate information can be easily incorporated
- Other key features worth noting:
  - the parametric model specification provides flexibility for inference e.g. MLE for estimation
  - model construction can accommodate both balanced and unbalanced data - an important feature for longitudinal data



### Copula function

For arbitrary m uniform random variables on the unit interval, copula function, C, can be uniquely defined as

$$C(u_1,\ldots,u_m)=P(U_1\leq u_1,\ldots,U_m\leq u_m).$$

Joint distribution:

$$F(y_1, \ldots, y_m) = C(F_1(y_1), \ldots, F_m(y_m)),$$

where  $F_k(y_k)$  are marginal distribution functions.

Joint density:

$$f(y_1,...,y_m) = c(F_1(y_1),...,F_m(y_m)) \prod_{k=1}^m f_k(y_k),$$

where  $f_k(y_k)$  are marginal density functions and c is the density associated with copula C.



### Multivariate joint distribution

Suppose we observe m number of response variables over T time periods for n subjects. Observed data for subject i is

$$\{(y_{i1,1}, y_{i1,2}, \dots, y_{i1,m}), \dots, (y_{iT,1}, y_{iT,2}, \dots, y_{iT,m})\}$$

so that

$$\mathbf{Y_{it}} = (y_{it,1}, y_{it,2}, \dots, y_{it,m}) \text{ for } i = 1, 2, \dots, n \text{ and } t = 1, 2, \dots, T$$

is the  $i^{th}$  observation in the  $t^{th}$  time period corresponding to m responses. The joint distribution of m response variables over time can be expressed as

$$H(\mathbf{y_{i1}}, \dots, \mathbf{y_{iT}}) = \mathbf{P}(\mathbf{Y_{i1}} \leq \mathbf{y_{i1}}, \dots, \mathbf{Y_{iT}} \leq \mathbf{y_{iT}}).$$

If  $\{\alpha_{ik}\}$  represent random effects with respect to the  $k^{th}$  response variable, conditional joint distribution at time t is

$$H(\mathbf{y_{it}}|\alpha_{i1},\ldots,\alpha_{im}) = C(F(y_{it,1}|\alpha_{i1}),\ldots,F(y_{it,m}|\alpha_{im})).$$



#### continued

Conditional joint density at time *t*:

$$h(\mathbf{y_{it}}|\alpha_{i1},\ldots,\alpha_{im}) = c(F(y_{it,1}|\alpha_{i1}),\ldots,F(y_{it,m}|\alpha_{im})) \prod_{k=1}^{m} f(y_{it,k}|\alpha_{ik})$$

where  $F(y_{it,k}|\alpha_{ik})$  denotes the distribution function of  $k^{th}$  response variable at time t. If  $\omega$  represents the set of parameters in the model, the likelihood of the  $i^{th}$  subject is given by

$$L(\boldsymbol{\omega}|(\mathbf{y_{i1}},\ldots,\mathbf{y_{iT}})) = h(\mathbf{y_{i1}},\ldots,\mathbf{y_{iT}}|\boldsymbol{\omega}).$$

We can write

$$h(\mathbf{y_{i1}}, \dots, \mathbf{y_{iT}} | \boldsymbol{\omega}) = \int_{\alpha_{i1}} \dots \int_{\alpha_{im}} h(\mathbf{y_{i1}}, \dots, \mathbf{y_{iT}} | \alpha_{i1}, \dots, \alpha_{im})$$
$$dG(\alpha_{i1}) \dots dG(\alpha_{im})$$

Under independence over time for a given random effect:

$$h(\mathbf{y_{i1}}, \dots, \mathbf{y_{iT}} | \alpha_{i1}, \dots, \alpha_{im}) = \prod^{T} h(\mathbf{y_{it}} | \alpha_{i1}, \dots, \alpha_{im})$$



#### continued

$$= \int_{\alpha_{i1}} \dots \int_{\alpha_{im}} \prod_{t=1}^{T} h(\mathbf{y_{it}} | \alpha_{i1}, \dots, \alpha_{im}) dG(\alpha_{i1}) \cdots dG(\alpha_{im})$$

and from the previous slides, we have

$$= \int_{\alpha_{i1}} \dots \int_{\alpha_{im}} \prod_{t=1}^{T} c(F(y_{it,1}|\alpha_{i1}), \dots, F(y_{it,m}|\alpha_{im}))$$

$$\prod_{k=1}^{m} f(y_{it,k}|\alpha_{ik}) dG(\alpha_{i1}) \cdots dG(\alpha_{im})$$

Then, we can write the log likelihood function as

$$\sum_{i} \log \left\{ \int_{\alpha_{i1}} \dots \int_{\alpha_{im}} \prod_{t=1}^{T} \prod_{k=1}^{m} c(F(y_{it,1}|\alpha_1), \dots, F(y_{it,m}|\alpha_m)) \right\}$$





### Choice for the marginals: the class of GB2

The model specification is flexible enough to accommodate any marginals; however, for our purposes, we chose the class of GB2 distributions. For  $Y \sim \text{GB2}(a,b,p,q)$  with  $a \neq 0,b,p,q > 0$ :

Density function:

$$f_y(y) = \frac{|a| y^{ap-1} b^{aq}}{B(p,q)(b^a + y^a)^{(p+q)}}$$

where  $B(\cdot, \cdot)$  is the usual Beta function.

Distribution function:

$$F_y(y) = B\left(\frac{(y/b)^a}{1 + (y/b)^a}; p, q\right)$$

where  $B(\cdot;\cdot,\cdot)$  is the incomplete Beta function.

Mean:

$$\mathsf{E}(Y) = b \; \frac{B(p+1/a, q-1/a)}{B(p, q)}.$$



### GB2 regression through the scale parameter

Suppose x is a vector of known covariates:

ullet We have:  $Y|\mathbf{x} \sim \mathsf{GB2}(a,b(\mathbf{x}),p,q)$ , where

$$b(\mathbf{x}) = \alpha + \beta' \mathbf{x}$$

• Define residuals  $\varepsilon_i = Y_i e^{-(\alpha_i + \beta' \mathbf{x}_i)}$  so that

$$\log Y_i = \alpha_i + \beta' \mathbf{x}_i + \log \varepsilon_i$$

where  $\varepsilon_i \sim \mathsf{GB2}(a,1,p,q)$ ).

- PP plots can then be used for diagnostics.
- See also McDonald (1984), McDonald and Butler (1987)



### Case study - global insurance demand



Response variables that can be used for insurance demand:

- Insurance density: Premiums per capita
- Insurance penetration: Ratio of insurance premiums to GDP
- Insurance in force: Outstanding face amount plus dividend

Some common covariates that have appeared in the literature:

- Income
- GDP growth
- Inflation

- P. Kumara and F.A. Valdez, U of Connecticut

- Urbanization
- Dependency ratio
- Death ratio



#### About the data set

#### Data set

- 2 responses: life and non-life insurance
- 5 predictor variables
- 75 countries (originally, later removed 3 countries)
- 6 years data (from year 2004 to year 2009)

#### Variables in the model

| Dependent variables |                                                                          |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| Non-life density    | Premiums per capita in non-life insurance                                |  |  |  |  |  |
| Life density        | Premiums per capita in life insurance                                    |  |  |  |  |  |
| Independent variab  | Independent variables                                                    |  |  |  |  |  |
| GDP per capita      | Ratio of gross domestic product (current US dollars) to total population |  |  |  |  |  |
| Religious           | Percentage of Muslim population                                          |  |  |  |  |  |
| Urbanization        | Percentage of urban population to total population                       |  |  |  |  |  |
| Death rate          | Percentage of death                                                      |  |  |  |  |  |
| Dependency ratio    | Ratio of population over 65 to working population                        |  |  |  |  |  |



### Multiple time series plot







### Multiple time series plot: removed 3 countries

After removing Ireland, Netherlands and the UK in the dataset:





### Some summary statistics

#### Summary statistics of variables in year 2004 to 2009:

| Variable           | Minimum                                 | Maximum              | Mean                 | Correlation with | Correlation with   |
|--------------------|-----------------------------------------|----------------------|----------------------|------------------|--------------------|
| Variable           | iviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | IVIAAIIIIUIII        | ivicali              |                  |                    |
|                    |                                         |                      |                      | Life insurance   | Non-life insurance |
| Non-life insurance | (0.74, 1.26)                            | (2427.61, 2857.40)   | (386.28, 516.99)     | (0.75, 0.80)     | -                  |
| Life insurance     | (0.49, 1.28)                            | (3058.58, 3803.76)   | (503.87, 697.39)     | -                | (0.75, 0.80)       |
| GDP per capita     | (375.20, 550.90)                        | (56311.50, 94567.90) | (13896.60, 20524.50) | (0.77, 0.82)     | (0.90, 0.91)       |
| Death rate         | (1.50, 1.52)                            | (16.17, 17.11)       | (7.87, 8.00)         | (0.09, 0.11)     | (0.06, 0.07)       |
| Urbanization       | (11.92, 13.56)                          | (100,100)            | (64.90, 66.29)       | (0.37, 0.42)     | (0.45, 0.46)       |
| Religious          | (0.01,0.01)                             | (99.61, 99.61)       | (22.12, 22.12)       | (-0.30, -0.29)   | (-0.30, -0.28)     |
| Dependency ratio   | (1.25, 1.39)                            | (29.31, 33.92)       | (14.89, 15.55)       | (0.57, 0.61)     | (0.57, 0.60)       |

#### Correlation matrix of covariates in year 2004 to 2009:

|                  | GDP per<br>capita | Death<br>rate  | Urbanization   | Religious      | Dependency<br>ratio |
|------------------|-------------------|----------------|----------------|----------------|---------------------|
| GDP per capita   | -                 |                |                |                |                     |
| Death rate       | (0.01, 0.03)      | -              |                |                |                     |
| Urbanization     | (0.49, 0.52)      | (-0.16, -0.15) | -              |                |                     |
| Religious        | (-0.29, -0.25)    | (-0.38, -0.34) | (-0.14, -0.13) | -              |                     |
| Dependency ratio | (0.58, 0.62)      | (0.53, 0.54)   | (0.30, 0.32)   | (-0.53, -0.52) | -                   |



### Scatter plots of the two response variables





### Scatter plots of the ranked response variables





x-axis: non-life insurance and y-axis: life insurance

### Histograms of two responses from year 2004 to 2009





#### Model calibration

- Marginals: GB2 with regression on the scale parameter
- Gaussian copula:

$$C(u_1, u_2; \rho) = \mathbf{\Phi}_{\rho}(\Phi^{-1}(u_1), \Phi^{-1}(u_2))$$

ullet Natural assumption for random effect for the  $k^{th}$  response:

$$\alpha_{ik} \sim N\left(0, \sigma_k^2\right)$$



#### Model estimates

|                        | Univariate fitted model for insurance demand |           |        |                        |           |        |
|------------------------|----------------------------------------------|-----------|--------|------------------------|-----------|--------|
|                        | Non-life insurance density                   |           |        | Life insurance density |           |        |
| Parameter              | Estimate                                     | Std Error | p-val  | Estimate               | Std Error | p-val  |
| Covariates             |                                              |           |        |                        |           |        |
| GDP per capita         | 0.0001                                       | 0.0000    | 0.0000 | 0.0001                 | 0.0000    | 0.0000 |
| Religious              | -0.0085                                      | 0.0023    | 0.0000 | -0.0231                | 0.0040    | 0.0000 |
| Urbanization           | 0.0567                                       | 0.0022    | 0.0000 | 0.0279                 | 0.0061    | 0.0000 |
| Death rate             |                                              |           |        | 0.0035                 | 0.0333    | 0.9164 |
| Dependency ratio (old) |                                              |           |        | -0.0440                | 0.0297    | 0.1390 |
| GB2 Marginals          |                                              |           |        |                        |           |        |
| a                      | 2.5636                                       | 0.1397    | 0.0000 | 1.0427                 | 0.0611    | 0.0000 |
| p                      | 1.3957                                       | 0.1356    | 0.0000 | 3.7321                 | 0.5371    | 0.0000 |
| q                      | 0.5369                                       | 0.0364    | 0.0000 | 0.5081                 | 0.0330    | 0.0000 |
| Random effect          |                                              |           |        |                        |           |        |
| $Sigma_{\alpha}$       | 0.6471                                       | 0.0535    | 0.0000 | 0.8507                 | 0.1088    | 0.0000 |

#### Gaussian copula:

| Parameter | Estimate | Std Error | p-val  |  |
|-----------|----------|-----------|--------|--|
| $\rho$    | 0.5174   | 0.0315    | 0.0000 |  |



### PP plots of the residuals for marginal diagnostics





### PP plots of the residuals for marginal diagnostics





#### Additional work intended

- Implementing diagnostic tests for model validation.
- Handling unbalanced and missing data.
- Identifying more actuarial-related problems within a multivariate longitudinal framework.
  - e.g. there is an ongoing interest in loss reserving using multiple loss triangle.
- Alternative approach:
  - Use multivariate generalized linear models for response in each time period and use copula to capture the inter-temporal dependence.
- (Possible) handling discrete response variables incorporating jitters.



#### Selected reference

- Beck, T. and Webb, I. (2003). Economic, Demographic and institutional determinants of life insurance consumption across countries. *World Bank Economic Review* 17: 51-99
- Browne, M. and Kim, K. (1993). An International analysis of life insurance demand. *The Journal of Risk and Insurance* 60: 616-634
- Browne, M., Chung, J., and Frees, E.W. (2000). International property-liability insurance consumption. *The Journal of Risk and Insurance* 67: 73-90
- Outreville, J. (1996). Life insurance market in developing countries. The Journal of Risk and Insurance 63: 263-278
- Shi, P. and Frees, E.W. (2010). Long-tail Longitudinal Modeling of Insurance Company Expenses. *Insurance: Mathematics and Economics* 47: 303-314



## - Thank you -

