Sutured Floer homology and Seifert surfaces

Faramarz Vafaee

Michigan State University

April 1st, 2012

Every knot in S³ bounds a Seifert surface

- Every knot in S³ bounds a Seifert surface
- Genus of K: Minimum genus taken over all oriented surfaces that K bounds

- Every knot in S³ bounds a Seifert surface
- Genus of K: Minimum genus taken over all oriented surfaces that K bounds
- Is a given minimal genus Seifert surface for a knot unique?

- Every knot in S³ bounds a Seifert surface
- Genus of K: Minimum genus taken over all oriented surfaces that K bounds
- Is a given minimal genus Seifert surface for a knot unique?
- R and R' are equivalent if there is an isotopy of S³ taking R to R'

- Every knot in S³ bounds a Seifert surface
- Genus of K: Minimum genus taken over all oriented surfaces that K bounds
- Is a given minimal genus Seifert surface for a knot unique?
- R and R' are equivalent if there is an isotopy of S³ taking R to R'
- Fiberedness of a knot is a sufficient condition for which its minimal genus Seifert surface is unique

We find

- We find
 - A family of knots with trivial Alexander polynomial

- We find
 - A family of knots with trivial Alexander polynomial
 - Construct two non-isotopic Seifert surfaces for each member in our family

- We find
 - A family of knots with trivial Alexander polynomial
 - Construct two non-isotopic Seifert surfaces for each member in our family
- Classical methods fail in distinguishing the two Seifert surfaces

Plumb two untwisted annuli

Plumb two untwisted annuli

- Plumb two untwisted annuli
- Tie arbitrary nontrivial knots, K_1 and K_2 in the annuli

- Plumb two untwisted annuli
- Tie arbitrary nontrivial knots, K_1 and K_2 in the annuli
- Produce some twists in each annulus such that

- Plumb two untwisted annuli
- Tie arbitrary nontrivial knots, K_1 and K_2 in the annuli
- Produce some twists in each annulus such that
 - The framing of the first annulus is 0

- Plumb two untwisted annuli
- Tie arbitrary nontrivial knots, K_1 and K_2 in the annuli
- Produce some twists in each annulus such that
 - The framing of the first annulus is 0
 - The framing of the other annulus is I, where $I \neq 0$

R and R' two Seifert surfaces

- R and R' two Seifert surfaces
- ullet Both R and R' bounded by $P(K_1, K_2)$

- R and R' two Seifert surfaces
- Both R and R' bounded by $P(K_1, K_2)$
- c₁, c₂, d₁ and d₂ basis elements for H₁ of the complements inside S³

Main theorem

Theorem(V)

Let $P(K_1, K_2)$ be the knot obtained by plumbing two annuli with arbitrary knots K_1 and K_2 as the following Figure, with framings I and 0, respectively, $I \neq 0$. Changing the plumbing results in the same knot, but two inequivalent Seifert surfaces, R and R'.

The surfaces' complements have a particular structure:
 Sutured manifold

- The surfaces' complements have a particular structure:
 Sutured manifold
- Invariant of sutured manifolds: Sutured Floer Homology(denoted by SFH)

- The surfaces' complements have a particular structure:
 Sutured manifold
- Invariant of sutured manifolds: Sutured Floer Homology(denoted by SFH)
- SFH as a Spin^c-graded group can be used to distinguish the surfaces

- The surfaces' complements have a particular structure:
 Sutured manifold
- Invariant of sutured manifolds: Sutured Floer Homology(denoted by SFH)
- SFH as a Spin^c-graded group can be used to distinguish the surfaces
- (SFH+Seifert form) useful to distinguish different Seifert surfaces

Example of a sutured manifold

An example of a sutured manifold

• A sutured manifold (M, γ) is a

- A sutured manifold (M, γ) is a
 - Compact oriented 3-manifold with boundary

- A sutured manifold (M, γ) is a
 - Compact oriented 3-manifold with boundary
 - Together with a set $\gamma \subset \partial M$

- A sutured manifold (M, γ) is a
 - Compact oriented 3-manifold with boundary
 - Together with a set $\gamma \subset \partial M$
 - γ consists of annuli $A(\gamma)$ and tori $T(\gamma)$

- A sutured manifold (M, γ) is a
 - Compact oriented 3-manifold with boundary
 - Together with a set $\gamma \subset \partial M$
 - γ consists of annuli $A(\gamma)$ and tori $T(\gamma)$
 - The interior of each component of $A(\gamma)$ contains a suture. The union of sutures: $s(\gamma)$

Definition of a sutured manifolds

- A sutured manifold (M, γ) is a
 - Compact oriented 3-manifold with boundary
 - Together with a set $\gamma \subset \partial M$
 - γ consists of annuli $A(\gamma)$ and tori $T(\gamma)$
 - The interior of each component of $A(\gamma)$ contains a suture. The union of sutures: $s(\gamma)$
- Take $R(\gamma) = \partial M \setminus int(\gamma)$

Definition of a sutured manifolds

- A sutured manifold (M, γ) is a
 - Compact oriented 3-manifold with boundary
 - Together with a set $\gamma \subset \partial M$
 - γ consists of annuli $A(\gamma)$ and tori $T(\gamma)$
 - The interior of each component of $A(\gamma)$ contains a suture. The union of sutures: $s(\gamma)$
- Take $R(\gamma) = \partial M \setminus int(\gamma)$
- $R_+(\gamma)$ ($R_-(\gamma)$), those components of $R(\gamma)$ whose normal vector points out of(into) M

Definition of a sutured manifolds

- A sutured manifold (M, γ) is a
 - Compact oriented 3-manifold with boundary
 - Together with a set $\gamma \subset \partial M$
 - γ consists of annuli $A(\gamma)$ and tori $T(\gamma)$
 - The interior of each component of $A(\gamma)$ contains a suture. The union of sutures: $s(\gamma)$
- Take $R(\gamma) = \partial M \setminus int(\gamma)$
- $R_+(\gamma)$ ($R_-(\gamma)$), those components of $R(\gamma)$ whose normal vector points out of(into) M
- $S^3(R) = S^3 \setminus int(R \times I)$. Equip this with $\gamma = \partial R \times \{1/2\}$

• Let v_0 be a nowhere vanishing vector field on ∂M

- Let v_0 be a nowhere vanishing vector field on ∂M
 - Pointing into M along $R_{-}(\gamma)$

- Let v_0 be a nowhere vanishing vector field on ∂M
 - Pointing into M along $R_{-}(\gamma)$
 - Pointing out of M along $R_+(\gamma)$

- Let v_0 be a nowhere vanishing vector field on ∂M
 - Pointing into M along $R_{-}(\gamma)$
 - Pointing out of M along $R_+(\gamma)$
 - Restricts to γ to be the gradient of a height function $s(\gamma) \times I \rightarrow I$

- Let v_0 be a nowhere vanishing vector field on ∂M
 - Pointing into M along $R_{-}(\gamma)$
 - Pointing out of M along $R_+(\gamma)$
 - Restricts to γ to be the gradient of a height function $s(\gamma) \times I \rightarrow I$
- The space of such vector fields is contractible

- Let v_0 be a nowhere vanishing vector field on ∂M
 - Pointing into M along $R_{-}(\gamma)$
 - Pointing out of M along $R_+(\gamma)$
 - Restricts to γ to be the gradient of a height function $\mathbf{s}(\gamma) \times I \to I$
- The space of such vector fields is contractible
- It makes sense to fix a representative v₀

• $\underline{Spin}^c(M, \gamma)$: Equivalence classes of nowhere vanishing vector field on M agreeing with v_0 along ∂M

- $\underline{Spin}^c(M, \gamma)$: Equivalence classes of nowhere vanishing vector field on M agreeing with v_0 along ∂M
- $Spin^c(M, \gamma)$: An affine space over $H^2(M, \partial M; \mathbb{Z})$

- $\underline{Spin}^c(M, \gamma)$: Equivalence classes of nowhere vanishing vector field on M agreeing with v_0 along ∂M
- $Spin^{c}(M, \gamma)$: An affine space over $H^{2}(M, \partial M; \mathbb{Z})$
- $\bullet \ \epsilon(\mathfrak{s}_1,\mathfrak{s}_2) = PD^{-1}[\mathfrak{s}_1 \mathfrak{s}_2] \text{ for } \mathfrak{s}_1,\mathfrak{s}_2 \in \underline{Spin}^c(M,\gamma)$

Sutured Floer homology

Sutured Floer homology

Sutured Floer homology splits

$$SFH(M, \frac{\gamma}{\gamma}) \cong \bigoplus_{\mathfrak{s} \in Spin^c(M, \gamma)} SFH(M, \frac{\gamma}{\gamma}, \mathfrak{s})$$

Sutured Floer homology

Sutured Floer homology splits

$$\mathit{SFH}(\mathit{M}, \textcolor{red}{\gamma}) \cong \bigoplus_{\mathfrak{s} \in \underline{\mathit{Spin}}^c(\mathit{M}, \gamma)} \mathit{SFH}(\mathit{M}, \textcolor{red}{\gamma}, \mathfrak{s})$$

• The support of $SFH(M, \gamma)$ is

$$S(M, \frac{\gamma}{\gamma}) = \{ \mathfrak{s} \in Spin^c(M, \frac{\gamma}{\gamma}) : SFH(M, \frac{\gamma}{\gamma}, \mathfrak{s}) \neq 0 \}$$

• v_0^{\perp} is a trivial vector bundle over ∂M

- v_0^{\perp} is a trivial vector bundle over ∂M
- $T(M, \gamma)$ is the set of all trivializations of v_0^{\perp}

- v_0^{\perp} is a trivial vector bundle over ∂M
- $T(M, \gamma)$ is the set of all trivializations of v_0^{\perp}
- For a trivialization $\mathfrak{t} \in T(M, \gamma)$

- v_0^{\perp} is a trivial vector bundle over ∂M
- $T(M, \gamma)$ is the set of all trivializations of v_0^{\perp}
- For a trivialization $\mathfrak{t} \in T(M, \gamma)$
 - $c_1(\mathfrak{s},\mathfrak{t})$: The relative Euler class of the vector bundle v^{\perp} with respect to the trivialization \mathfrak{t}

• Fix a trivialization $\mathfrak{t} \in T(M, \gamma)$

- Fix a trivialization $\mathfrak{t} \in T(M, \gamma)$
- $c_1(\mathfrak{s},\mathfrak{t}) \in H^2(M,\partial M;\mathbb{Z})$

- Fix a trivialization $\mathfrak{t} \in T(M, \gamma)$
- $c_1(\mathfrak{s},\mathfrak{t}) \in H^2(M,\partial M;\mathbb{Z})$
- Define

- Fix a trivialization $\mathfrak{t} \in T(M, \gamma)$
- $c_1(\mathfrak{s},\mathfrak{t}) \in H^2(M,\partial M;\mathbb{Z})$
- Define

$$\mathbf{C}(M,\gamma,\mathfrak{t})=\{c_1(\mathfrak{s},\mathfrak{t}):\mathfrak{s}\in S(M,\gamma)\}\subset H^2(M,\partial M;\mathbb{R})$$

- Fix a trivialization $\mathfrak{t} \in T(M, \gamma)$
- $c_1(\mathfrak{s},\mathfrak{t}) \in H^2(M,\partial M;\mathbb{Z})$
- Define

$$\mathbf{C}(M,\gamma,\mathfrak{t})=\{\mathbf{c}_1(\mathfrak{s},\mathfrak{t}):\mathfrak{s}\in S(M,\gamma)\}\subset H^2(M,\partial M;\mathbb{R})$$

• $P(M, \gamma, \mathfrak{t})$: The polytope obtained as the convex hull of $C(M, \gamma, \mathfrak{t})$ inside $H^2(M, \gamma; \mathbb{R})$

• Knotted annuli with oriented sutures, $A(K_1)$ and $A(K_2)$

- Knotted annuli with oriented sutures, $A(K_1)$ and $A(K_2)$
- The complement of each of these annuli in S³ is homeomorphic to the knot complement

Polytopes of $\overline{S^3(A(K_i))}$

Polytopes of $S^3(A(K_i))$

•
$$H_1(S^3(A(K_i))) \cong \mathbb{Z}$$

Polytopes of $S^3(A(K_i))$

• $H_1(S^3(A(K_i))) \cong \mathbb{Z}$

Polytopes of $S^3(\overline{A(K_i)})$

• $H_1(S^3(A(K_i))) \cong \mathbb{Z}$

Polytopes of $S^3(A(K_i))$

• $H_1(S^3(A(K_i))) \cong \mathbb{Z}$

• Polytopes for $S^3(A(K_1))$ and $S^3(A(K_2))$

Polytopes of $S^3(A(K_i))$

• $H_1(S^3(A(K_i))) \cong \mathbb{Z}$

- Polytopes for $S^3(A(K_1))$ and $S^3(A(K_2))$
- G_1 , G_n , H_1 and H_m are all non-zero

Tensor product formula

Tensor product formula

We now plumb the annuli

Tensor product formula

- We now plumb the annuli
- (Juhász-Ni)If a surface R is a Murasugi sum of two subsurfaces R₁ and R₂

$$SFH\left(S^{3}(R)\right)\cong SFH\left(S^{3}(R_{1})\right)\otimes SFH\left(S^{3}(R_{2})\right)$$

Polytope of $S^3(R)$

Polytopes of $S^3(A(K_i))$

Polytopes for $S^3(A(K_1))$ and $S^3(A(K_2))$

Polytope of $S^3(R)$

• The polytopes of $SFH(S^3(R))$ and $SFH(S^3(R'))$ are rectangular

- The polytopes of SFH(S³(R)) and SFH(S³(R')) are rectangular
- The corners in each rectangle have non-zero groups

- The polytopes of $SFH(S^3(R))$ and $SFH(S^3(R'))$ are rectangular
- The corners in each rectangle have non-zero groups
- In $SFH(S^3(R))$ for instance, $G_1 \otimes H_1$, $G_1 \otimes H_m$, $G_n \otimes H_1$ and $G_n \otimes H_m$ are all non-zero

It remains to prove R and R' are inequivalent.

It remains to prove R and R' are inequivalent. We use a contrapositive argument.

If R and R' were equivalent

• A function $f: S^3(R) \to S^3(R')$

- A function $f: S^3(R) \to S^3(R')$
- ullet $f_*: H_1(S^3(R)) o H_1(S^3(R'))$ preserves the Seifert form

- A function $f: S^3(R) \to S^3(R')$
- $f_*: H_1(S^3(R)) \to H_1(S^3(R'))$ preserves the Seifert form
 - i.e., $a.b = f_*(a).f_*(b)$ for every $a, b \in H_1(S^3(R))$

- A function $f: S^3(R) \to S^3(R')$
- $f_*: H_1(S^3(R)) \to H_1(S^3(R'))$ preserves the Seifert form • i.e., $a.b = f_*(a).f_*(b)$ for every $a.b \in H_1(S^3(R))$
- An isomorphism σ : $SFH(S^3(R)) \rightarrow SFH(S^3(R'))$;

- A function $f: S^3(R) \to S^3(R')$
- $f_*: H_1(S^3(R)) \to H_1(S^3(R'))$ preserves the Seifert form • i.e., $a.b = f_*(a).f_*(b)$ for every $a,b \in H_1(S^3(R))$
- An isomorphism $\sigma: SFH(S^3(R)) \to SFH(S^3(R'));$ compatible with taking difference classes

- A function $f: S^3(R) \to S^3(R')$
- $f_*: H_1(S^3(R)) \to H_1(S^3(R'))$ preserves the Seifert form • i.e., $a.b = f_*(a).f_*(b)$ for every $a,b \in H_1(S^3(R))$
- An isomorphism $\sigma: SFH(S^3(R)) \to SFH(S^3(R'));$ compatible with taking difference classes
 - i.e., for $x, y, z, w \in SFH(S^3(R))$

- A function $f: S^3(R) \to S^3(R')$
- $f_*: H_1(S^3(R)) \to H_1(S^3(R'))$ preserves the Seifert form • i.e., $a.b = f_*(a).f_*(b)$ for every $a,b \in H_1(S^3(R))$
- An isomorphism $\sigma: SFH(S^3(R)) \to SFH(S^3(R'));$ compatible with taking difference classes
 - i.e., for $x, y, z, w \in SFH(S^3(R))$ $\epsilon(\sigma(x), \sigma(y)).\epsilon(\sigma(z), \sigma(w)) = f_*\epsilon(x, y).f_*\epsilon(z, w)$

Take $\mathbf{x}_{ij} \in \mathbf{G}_i \otimes \mathbf{H}_j$

Suppose R and R' were equivalent.

Suppose R and R' were equivalent.

We get a contradiction.

Suppose R and R' were equivalent.

We get a contradiction. For on the one hand

Suppose R and R' were equivalent.

We get a contradiction. For on the one hand

$$\epsilon(\mathbf{x}_{11}, \mathbf{x}_{nm}).\epsilon(\mathbf{x}_{11}, \mathbf{x}_{k1}) = \pm(nkl + mk)$$

Suppose R and R' were equivalent.

We get a contradiction. For on the one hand

$$\epsilon(\mathbf{X}_{11}, \mathbf{X}_{nm}).\epsilon(\mathbf{X}_{11}, \mathbf{X}_{k1}) = \pm(nkl + mk)$$

On the other hand

Suppose R and R' were equivalent.

We get a contradiction. For on the one hand

$$\epsilon(\mathbf{X}_{11}, \mathbf{X}_{nm}).\epsilon(\mathbf{X}_{11}, \mathbf{X}_{k1}) = \pm(nkl + mk)$$

On the other hand

$$\begin{split} \epsilon(\sigma(\mathbf{X}_{11}), \sigma(\mathbf{X}_{nm})).\epsilon(\sigma(\mathbf{X}_{11}), \sigma(\mathbf{X}_{k1})) \\ &= f_*(\epsilon(\mathbf{X}_{11}, \mathbf{X}_{nm})).f_*(\epsilon(\mathbf{X}_{11}, \mathbf{X}_{k1})) = \pm nk \end{split}$$

Suppose R and R' were equivalent.

We get a contradiction. For on the one hand

$$\epsilon(\mathbf{X}_{11}, \mathbf{X}_{nm}).\epsilon(\mathbf{X}_{11}, \mathbf{X}_{k1}) = \pm(nk\mathbf{I} + m\mathbf{k})$$

On the other hand

$$\epsilon(\sigma(\mathbf{X}_{11}), \sigma(\mathbf{X}_{nm})).\epsilon(\sigma(\mathbf{X}_{11}), \sigma(\mathbf{X}_{k1}))$$

$$= f_*(\epsilon(\mathbf{X}_{11}, \mathbf{X}_{nm})).f_*(\epsilon(\mathbf{X}_{11}, \mathbf{X}_{k1})) = \pm nk$$

• Therefore, $R \not\simeq R'$.

Thank you!