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@ Every knot in S® bounds a Seifert surface

@ Genus of K: Minimum genus taken over all oriented
surfaces that K bounds
@ Is a given minimal genus Seifert surface for a knot unique?

2127

Faramarz Vafaee (MSU) Sutured Floer homology and Seifert surfaces April 1st, 2012



@ Every knot in S® bounds a Seifert surface

@ Genus of K: Minimum genus taken over all oriented
surfaces that K bounds

@ Is a given minimal genus Seifert surface for a knot unique?

@ R and R’ are equivalent if there is an isotopy of S® taking R
to R’
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@ Every knot in S® bounds a Seifert surface

@ Genus of K: Minimum genus taken over all oriented
surfaces that K bounds

@ Is a given minimal genus Seifert surface for a knot unique?
@ R and R’ are equivalent if there is an isotopy of S® taking R
to R’

@ Fiberedness of a knot is a sufficient condition for which its
minimal genus Seifert surface is unique
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@ We find
@ A family of knots with trivial Alexander polynomial
@ Construct two non-isotopic Seifert surfaces for each member
in our family
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@ We find

@ A family of knots with trivial Alexander polynomial
@ Construct two non-isotopic Seifert surfaces for each member
in our family

@ Classical methods fail in distinguishing the two Seifert
surfaces
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Constructing the knots
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Faramarz Vafaee (MSU) Sutured Floer homology and Seifert surfaces April 1st, 2012 427



Constructing the knots

@ Plumb two untwisted annuli

Faramarz Vafaee (MSU) Sutured Floer homology and Seifert surfaces April 1st, 2012 427



Constructing the knots

@ Plumb two untwisted annuli
@ Tie arbitrary nontrivial knots, K; and K; in the annuli
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Constructing the knots
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@ Tie arbitrary nontrivial knots, K; and K; in the annuli
@ Produce some twists in each annulus such that
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Constructing the knots

@ Plumb two untwisted annuli
@ Tie arbitrary nontrivial knots, K; and K; in the annuli
@ Produce some twists in each annulus such that

@ The framing of the first annulus is O
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Constructing the knots

@ Plumb two untwisted annuli
@ Tie arbitrary nontrivial knots, K; and K; in the annuli
@ Produce some twists in each annulus such that

@ The framing of the first annulus is O
@ The framing of the other annulusis |, where | # 0
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Example
Cc : \i:'f;/, 2 Cc \;37; 57 9
ek >
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<> /

@ R and R’ two Seifert surfaces
@ Both R and R’ bounded by P (K, K»)




@ R and R’ two Seifert surfaces
@ Both R and R’ bounded by P (K, K»)

@ c,, Cp, d; and d, basis elements for H; of the complements
inside S3
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Let P(Ky, K3) be the knot obtained by plumbing two annuli with
arbitrary knots K; and K as the following Figure, with framings |
and 0, respectively, | = 0. Changing the plumbing results in the
same knot, but two inequivalent Seifert surfaces, R and R’.
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@ The surfaces’ complements have a particular structure:
Sutured manifold
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@ The surfaces’ complements have a particular structure:
Sutured manifold

@ Invariant of sutured manifolds: Sutured Floer
Homology(denoted by SFH)
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@ The surfaces’ complements have a particular structure:
Sutured manifold

@ Invariant of sutured manifolds: Sutured Floer
Homology(denoted by SFH)

@ SFH as a Spin®-graded group can be used to distinguish
the surfaces
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@ The surfaces’ complements have a particular structure:
Sutured manifold

@ Invariant of sutured manifolds: Sutured Floer
Homology(denoted by SFH)

@ SFH as a Spin®-graded group can be used to distinguish
the surfaces

@ (SFH+Seifert form) useful to distinguish different Seifert
surfaces
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Example of a sutured manifold

An example of a sutured manifold
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Definition of a sutured manifolds
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Definition of a sutured manifolds

@ A sutured manifold (M, ) is a
@ Compact oriented 3-manifold with boundary
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Definition of a sutured manifolds

@ A sutured manifold (M, ) is a

@ Compact oriented 3-manifold with boundary
@ Together with a set v ¢ oM
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Definition of a sutured manifolds

@ A sutured manifold (M, ) is a
@ Compact oriented 3-manifold with boundary
@ Together with a set v < oM
@ ~ consists of annuli A(~) and tori T ()
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Definition of a sutured manifolds

@ A sutured manifold (M, ) is a

@ Compact oriented 3-manifold with boundary

@ Together with a set v < oM

@ ~ consists of annuli A(~) and tori T ()

@ The interior of each component of A(+) contains a suture.
The union of sutures: s(v)
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Definition of a sutured manifolds

@ A sutured manifold (M, ) is a
@ Compact oriented 3-manifold with boundary
@ Together with a set v < oM
@ ~ consists of annuli A(~) and tori T ()
@ The interior of each component of A(+) contains a suture.
The union of sutures: s(v)

@ Take R(7) = oM\int()
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Definition of a sutured manifolds

@ A sutured manifold (M, ) is a
@ Compact oriented 3-manifold with boundary
@ Together with a set v < oM
@ ~ consists of annuli A(~) and tori T ()
@ The interior of each component of A(+) contains a suture.
The union of sutures: s(v)

@ Take R(7) = oM\int()
@ R, (7) (R_(v)), those components of R(~) whose normal
vector points out of(into) M
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Definition of a sutured manifolds

@ A sutured manifold (M, ) is a
@ Compact oriented 3-manifold with boundary
@ Together with a set v < oM
@ ~ consists of annuli A(~) and tori T ()
@ The interior of each component of A(+) contains a suture.
The union of sutures: s(v)

@ Take R(7) = oM\int()

@ R, (7) (R_(v)), those components of R(~) whose normal
vector points out of(into) M

@ S3(R) = S3\int(R x I). Equip this with - = 0R x {1/2}
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Sutured manifolds
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Sutured manifolds

@ Let vy be a nowhere vanishing vector field on 6M
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Sutured manifolds

@ Let vy be a nowhere vanishing vector field on 6M
@ Pointing into M along R_(~)
@ Pointing out of M along R, ()
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Sutured manifolds

@ Let vy be a nowhere vanishing vector field on 6M
@ Pointing into M along R_(~)
@ Pointing out of M along R, ()
@ Restricts to « to be the gradient of a height function
S(y) x 1 —1

Faramarz Vafaee (MSU) Sutured Floer homology and Seifert surfaces April 1st, 2012



Sutured manifolds

@ Let vy be a nowhere vanishing vector field on 6M
@ Pointing into M along R_(~)
@ Pointing out of M along R, ()
@ Restricts to « to be the gradient of a height function
S(y) x 1 —1
@ The space of such vector fields is contractible
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Sutured manifolds

@ Let vy be a nowhere vanishing vector field on 6M
@ Pointing into M along R_(~)
@ Pointing out of M along R, ()
@ Restricts to ~y to be the gradient of a height function
S(y) x 1 —1
@ The space of such vector fields is contractible
@ It makes sense to fix a representative vq
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Relative Spin®-structures
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Relative Spin®-structures

@ Spin°(M, ~): Equivalence classes of nowhere vanishing
vector field on M agreeing with vy along oM
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Relative Spin®-structures

@ Spin°(M, ~): Equivalence classes of nowhere vanishing
vector field on M agreeing with vy along oM

@ Spin°(M, ~): An affine space over H?(M, oM; Z)
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Relative Spin®-structures

@ Spin°(M, ~): Equivalence classes of nowhere vanishing
vector field on M agreeing with vy along oM

@ Spin°(M, ~): An affine space over H?(M, oM; Z)
@ c(s1,5,) = PD7Y[s1 — 5] for s1, 5, € Spin®(M, ~)

Faramarz Vafaee (MSU) Sutured Floer homology and Seifert surfaces April 1st, 2012 12/ 27



Sutured Floer homology
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Sutured Floer homology

@ Sutured Floer homology splits

SFH(M, ) = @ SFH(M, -, s)
seSpIn®(M,~)
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Sutured Floer homology

@ Sutured Floer homology splits

SFH(M, ) = @ SFH(M, -, s)
seSpIn®(M,~)

@ The support of SFH(M, ~) is

S(M, ) = {5 € SpIn°(M, ) : SFH(M, -, 5) + O}
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Relative Euler class
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Relative Euler class

@ vy is a trivial vector bundle over oM
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Relative Euler class

@ vy is a trivial vector bundle over oM
@ T(M,~) is the set of all trivializations of v
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Relative Euler class

@ vy is a trivial vector bundle over oM
@ T(M,~) is the set of all trivializations of v
@ For a trivialization te T (M, )
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Relative Euler class

@ vy is a trivial vector bundle over oM
@ T(M,~) is the set of all trivializations of v
@ For a trivialization te T (M, )
@ ci(s,t): The relative Euler class of the vector bundle v+ with
respect to the trivialization t
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Polytope

@ Fix a trivialization te T (M, )
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Polytope

@ Fix a trivialization te T (M, )
@ Cy(s,t) e H3(M,0M; Z)
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Polytope

@ Fix a trivialization te T (M, )
@ Cy(s,t) e H3(M,0M; Z)
@ Define
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Polytope

@ Fix a trivialization te T (M, )
@ Cy(s,t) e H3(M,0M; Z)
@ Define

C(M, . 1) = {ci(s,8) : s € S(M, )} « HE(M, dM; R)
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Polytope

@ Fix a trivialization te T (M, )
@ Cy(s,t) e H3(M,0M; Z)
@ Define

C(M, . 1) = {ci(s,8) : s € S(M, )} « HE(M, dM; R)

@ P(M,~,t): The polytope obtained as the convex hull of
C(M,~,t) inside H3(M, ; R)
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The surface R before plumbing
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The surface R before plumbing

@ Knotted annuli with oriented sutures, A(K;) and A(K;)
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The surface R before plumbing

@ Knotted annuli with oriented sutures, A(K;) and A(K;)

@ The complement of each of these annuli in S3 is
homeomorphic to the knot complement

Faramarz Vafaee (MSU) Sutured Floer homology and Seifert surfaces April 1st, 2012 16/ 27



Polytopes of S3(A(K;))
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Polytopes of S3(A(K;))

0 Hi(S3(A(K))) = Z
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Polytopes of S3(A(K;))

° Hi(S*(A(Ki)))

lle

Z
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Polytopes of S3(A(K;))

° Hi(S3(AK))) = Z
C1 C1 C1
G, G, ' G,
Co Co Co
Hi  H, Hm
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Polytopes of S3(A(K;))

° Hi(S3(AK))) = Z
C1 C1 C1
G, G, ' G,
Co Co Co
Hi  H, Hm

@ Polytopes for S3(A(K;)) and S3(A(Kz))
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Polytopes of S3(A(K;))

° Hi(S3(AK))) = Z
C1 C1 C1
G, G, ' G,
Co Co Co
Hi  H, Hm

@ Polytopes for S3(A(K;)) and S3(A(Kz))
@ G4, G,, H; and H,, are all non-zero
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Tensor product formula
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Tensor product formula

@ We now plumb the annuli
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Tensor product formula

@ We now plumb the annuli

@ (Juhasz-Ni)If a surface R is a Murasugi sum of two
subsurfaces R; and R,

SFH (S%(R)) = SFH (S*(R1)) ® SFH (S*(Rz))
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Polytope of S3(R)

G, ®H; % G,®H;

Co Co
Gi®H, —© G,®H;
Co Co
Co Co
Gl 2y Hm €1 c':‘2 & Hm

Gt . _ % G,@H,
Co

Cl e Cl Gn®H2
C2
C2

Cl e Cl Gn@Hm
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Polytopes of S3(A(K;))

Polytopes for S*(A(K;)) and S3(A(K>))
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Polytope of S3(R)

G, ®H; % G,®H;

Co Co
Gi®H, —© G,®H;
Co Co
Co Co
Gl 2y Hm €1 c':‘2 & Hm

Gt . _ % G,@H,
Co

Cl e Cl Gn®H2
C2
C2

Cl e Cl Gn@Hm
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Summarizing the results
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Summarizing the results

@ The polytopes of SFH(S3(R)) and SFH(S3(R’)) are
rectangular
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Summarizing the results

@ The polytopes of SFH(S3(R)) and SFH(S3(R")) are
rectangular
@ The corners in each rectangle have non-zero groups
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Summarizing the results

@ The polytopes of SFH(S3(R)) and SFH(S3(R")) are
rectangular
@ The corners in each rectangle have non-zero groups

@ In SFH(S3(R)) for instance, G; ® Hi, G1 ® Hm, G, ® Hy and
G, ® Hy, are all non-zero
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Plan of the proof
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Plan of the proof




Plan of the proof




Plan of the proof

It remains to prove R and R are inequivalent. We use a
contrapositive argument.
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"Proof” of the main theorem

If R and R" were equivalent
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"Proof” of the main theorem

If R and R" were equivalent
@ Afunction f : S3(R) — S3(R)
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"Proof” of the main theorem

If R and R" were equivalent
@ Afunction f : S3(R) — S3(R)
o f,: Hi(S3(R)) — H1(S3(R")) preserves the Seifert form
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"Proof” of the main theorem

If R and R" were equivalent
@ Afunction f : S3(R) — S3(R)
o f,: Hi(S3(R)) — H1(S3(R")) preserves the Seifert form
e i.e.,ab =f,(a).f.(b) for every a,b € H1(S3(R))
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"Proof” of the main theorem

If R and R" were equivalent
@ Afunction f : S3(R) — S3(R)
o f,: Hi(S3(R)) — H1(S3(R")) preserves the Seifert form
e i.e.,ab =f,(a).f.(b) for every a,b € H1(S3(R))
@ An isomorphism ¢ : SFH(S3(R)) — SFH(S3(R"));
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"Proof” of the main theorem

If R and R" were equivalent
@ Afunction f : S3(R) — S3(R)
o f,: Hi(S3(R)) — H1(S3(R")) preserves the Seifert form
e i.e.,ab =f,(a).f.(b) for every a,b € H1(S3(R))
@ An isomorphism ¢ : SFH(S3(R)) — SFH(S3(R"));
compatible with taking difference classes

Faramarz Vafaee (MSU) Sutured Floer homology and Seifert surfaces April 1st, 2012



"Proof” of the main theorem

If R and R" were equivalent
@ Afunction f : S3(R) — S3(R)
o f,: Hi(S3(R)) — H1(S3(R")) preserves the Seifert form
e i.e.,ab =f,(a).f.(b) for every a,b € H1(S3(R))
@ Anisomorphism ¢ : SFH(S3(R)) — SFH(S%(R"));
compatible with taking difference classes
e i.e,forx,y,z,w e SFH(S3(R))
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"Proof” of the main theorem

If R and R" were equivalent

@ Afunction f : S3(R) — S3(R)

o f,: Hi(S3(R)) — H1(S3(R")) preserves the Seifert form
e i.e.,ab =f,(a).f.(b) for every a,b € H1(S3(R))

@ An isomorphism ¢ : SFH(S3(R)) — SFH(S3(R"));

compatible with taking difference classes
e i.e,forx,y,z,w e SFH(S3(R))
e(a(X),o(y)).e(c(z),0(w)) = fee(X,y).fre(z, W)
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"Proof” of the main theorem
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"Proof” of the main theorem

Take Xjj € G® Hj

G,®H,__ % G,®H,__©1 . C1 G,®H;
Co Co C2

Gi®H, %1 G,@H,__ %1 .. % G,®H,
C Co C2
Co Co Co

G, ®Hmn_ % G,®H,_ %1 . C1 G,®Hn
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"Proof” of the main theorem
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"Proof” of the main theorem

Suppose R and R" were equivalent.
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"Proof” of the main theorem

Suppose R and R" were equivalent.
@ We get a contradiction.
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"Proof” of the main theorem

Suppose R and R" were equivalent.
@ We get a contradiction. For on the one hand

€(X11, Xnm)-€(X11, X¢1) = £(nkl 4+ mk)
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"Proof” of the main theorem

Suppose R and R" were equivalent.
@ We get a contradiction. For on the one hand

€(X11, Xnm)-€(X11, X¢1) = £(nkl 4+ mk)

@ On the other hand
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"Proof” of the main theorem

Suppose R and R" were equivalent.
@ We get a contradiction. For on the one hand

€(X11, Xnm)-€(X11, X¢1) = £(nkl 4+ mk)

@ On the other hand

€(0(X11), 0(Xam))-€(0 (X11), 0 (Xk1))
= f*(e(xll,xnm)).f*(e(xll, Xkl)) = +nk
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"Proof” of the main theorem

Suppose R and R" were equivalent.
@ We get a contradiction. For on the one hand

€(X11, Xam )-€(Xa11, Xk1) = £(nkl + mk)
@ On the other hand

€(0(X11), 0(Xam))-€(0 (X11), 0 (Xk1))
= f*(e(xll,xnm)).f*(e(xll, Xkl)) = +nk

@ Therefore, R 2 R’.

Faramarz Vafaee (MSU) Sutured Floer homology and Seifert surfaces April 1st, 2012



Thank you!
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