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1. Summary

My main research interests lie in low dimensional topology and geometry, knot theory, and
handlebody theory. More specifically, these interests include Heegaard Floer homology, sutured
Floer homology, and Heegaard splittings and tunnel number of knots.

Heegaard Floer theory is a set of invariants of three- and four-dimensional manifolds which
have significantly impacted the study of many areas of low dimensional topology including Dehn
surgery and foliation theory. As can be seen in Sections 3 and 4, my current and future work
aims to fit within this framework.

One important aspect of the theory is that it provides invariants for knots in three-manifolds
[25, 28]. To date, my research has focused primarily on the interactions between knot theory
and various Floer homology invariants.

Inspired by the theory of sutured manifolds [5], Juhász introduced sutured Floer homology,
an invariant of three-manifolds with certain types of boundary [13]. In [32] I use this invariant
to distinguish minimal genus Seifert surfaces of an infinite family of knots with trivial Alexander
polynomial. This family of examples provides the first use of the full strength of sutured Floer
homology, and not merely its Euler characteristic (a classical torsion), to distinguish Seifert
surfaces.

The three-manifolds with simplest Heegaard Floer invariants are rational homology three-
spheres for which the rank of the Floer homology is equal to the order of the first singular
homology. Stemming from the fact that lens spaces form a large collection of examples, such
manifolds are called L-spaces. It has been a long standing goal in three-manifold topology
to classify the knots on which surgery can be performed to yield a lens space. Indeed, there
is a conjecture that a construction due to Berge which produces knots in S3 with lens space
surgeries is complete (in the sense that any knot admitting a lens space surgery comes from this
construction). Then it is natural to look beyond Berge’s list for L-space knots, i.e., knots that
admit L-space surgeries [17, 27, 34]. In [33] I find a family of L-space knots, some of which are
known to live outside of Berge’s collection. In particular, I classify the knots in a subfamily of
twisted torus knots that admit L-space surgeries.

A step in a similar direction is my result with Hom and Lidman [12]. In this work, we find
satellite operations on knots, using Berge-Gabai knots as the pattern, that produce L-space
knots. From their definition, Berge-Gabai knots are knots in S1�D2 with non-trivial solid tori
fillings. Restricting to the use of torus knots as the pattern, we obtain a prior result for cabling
operations [9, 11].

I am currently working on a project, joint with Krcatovich, to prove that one can obtain more
L-space satellite operations by choosing a pattern from the list of L-space knots in [33]. Our
approach would require an explicit computation of the knot Floer complex associated to such
satellite knots, using techniques from bordered Heegaard Floer homology [18].
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2. Results

2.1 Heegaard Floer homology and L-space knots

Heegaard Floer theory consists of a set of invariants of three- and four-dimensional manifolds

[25]. For Y a rational homology three-sphere, one example of such invariants is yHF pY q, which

is an abelian group satisfying rk yHF pY q ¥ |H1pY ;Zq| [26]. By definition, Y is called an L-
space whenever equality is achieved. Lens spaces, Lpp, qq, form a large family of L-spaces. This
fact can be seen by examining the Heegaard Floer complex associated to a genus one Heegaard
splitting of Lpp, qq. A knot K � S3 that admits an L-space Dehn surgery is called an L-space
knot.

Torus knots are well-known to admit lens space surgeries. A generalization is the family of
twisted torus knots, Kpp, q; s, rq, which are defined to be pp, qq torus knots with r full twist(s) on
s adjacent strands. In [33] I classify the L-space twisted pp, kp�1q torus knots. For p, k, s, r ¡ 0:

Theorem 0.1. The twisted torus knot, Kpp, kp�1; s, rq, is an L-space knot if and only if either
s � p� 1 or s P t2, p� 2u and r � 1.

A key ingredient of the proof is the observation that all of the twisted pp, kp� 1q torus knots
are p1, 1q knots, i.e. knots that can be placed in one-bridge position with respect to a genus
one Heegaard splitting of S3. From the perspective of knot Floer homology, p1, 1q knots are
particularly appealing, since they can presented by a doubly-pointed Heegaard diagram of genus
one [7]. The chain complex for knot Floer homology is defined in terms of a doubly-pointed
Heegaard diagram. As shown by Ozsváth and Szabó [24], for knots admitting a genus one
Heegaard diagram, knot Floer homology can be computed combinatorially and efficiently.

Another goal in the study of L-space knots is to classify the satellite operations on knots that
produce L-space knots. Recall that, the construction of a satellite knot involves a knot K in S3

and a knot P in V � S1 �D2. The satellite knot, P pKq, with companion K and pattern P , is
the image of P under an embedding f : V Ñ S3 which maps V to a regular neighborhood of
K. By combining work of Hedden [9] and Hom [11], the pm,nq cable of a knot K � S3 is an
L-space knot if and only if K is an L-space knot and n{m ¥ 2gpKq � 1. Hom, Lidman and I
generalize this result in [12] by introducing new L-space satellite operations using Berge-Gabai
knots [6] as the patterns. To see this as a generalization, it should be noted that any torus knot
is a Berge-Gabai knot [20].

It is shown in [6] that any Berge-Gabai knot must be either a torus knot or a 1-bridge braid
in S1 � D2. A Berge-Gabai knot P in V � S1 � D2 with winding number w arises from the
following construction. In the braid group Bw let σi denote the generator of Bw that performs a
positive half twist on strands i, i� 1 . Let σ � σbσb�1...σ1 be a braid in Bw with 0 ¤ b ¤ w� 2
and let t be an integer satisfying 1 ¤ t ¤ w � 2. Place σ in a solid cylinder and glue the ends
so that the bottom of the strands are connected to the top after a 2πt{w positive twist. This
construction forms a torus knot if b � 0 and a 1-bridge representation of P in V if 1 ¤ b ¤ w�2.
We call b the bridge width and t the twist number of P . Our result states that:

Theorem 0.2. Let P be a q ¥ 0 times positively twisted Berge-Gabai knot with bridge width b,
twist number t, and winding number w, and let K be an arbitrary knot in S3. Then the satellite

P pKq is an L-space knot if and only if K is an L-space knot and
b� tw � qw2

w2
¥ 2gpKq � 1.
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Note that when b � 0, because we can take m � w and n � t � qw, Theorem 0.2 reduces
to the cabling result of [11]. By applying techniques developed in [6, 8] to carefully explore the
framing change of the solid torus surgered along P , we prove the “if” direction of the theorem.
More precisely, surgery on P pKq corresponds to first doing surgery on P , and attaching this
to the exterior of K. Therefore, if one chooses the filling on P such that the result is a solid
torus (using that P is a Berge-Gabai knot), then the induced surgery on P pKq corresponds to
attaching a solid torus to the exterior of K (performing surgery on K). Moreover, note that
by adding q positive Dehn twists to a Berge-Gabai knot P , we can obtain an infinite family of
Berge-Gabai knots. Fixing an L-space knot K, as q increases, the satellite switches from a knot
with no L-space surgeries to an L-space knot. The latter fact holds since:

Remark 0.3. For an L-space knot K, S3
r pKq is an L-space whenever r ¥ 2gpKq � 1.

Finally, the “only if” direction is proved by equating the ranks ofyHF for the manifolds obtained
from surgeries on K and P pKq.

Our result can be applied to produce an infinite family of manifolds with “nice” JSJ de-
compositions. Recall that irreducible, orientable, closed three-manifolds have a unique (up to
isotopy) minimal collection of disjointly embedded incompressible tori such that each compon-
ent of the three-manifold obtained by cutting along the tori is either atoroidal or Seifert-fibered.
Moreover, closed atoroidal Haken manifolds are hyperbolic [30]. Theorem 0.2 can be used to
obtain L-spaces with arbitrary hyperbolic and Seifert fibered pieces in their JSJ decompositions.

Corollary 0.4. For non-negative integers m and n, there exist an infinite family of L-spaces
such that their JSJ decompositions consist of m hyperbolic pieces and n Seifert fibered pieces.

2.2 Sutured Floer homology and Seifert surfaces

András Juhász in 2006, introduced sutured Floer homology (denoted SFH) which is an
invariant of three-manifolds with boundary together with a collection of curves in the boundary
satisfying certain types of conditions. He posed the question, whether or not SFH can be
used to distinguish two minimal genus Seifert surfaces of a given knot K � S3. Technically,
a knot K can have more than one minimal genus Seifert surface, and two Seifert surfaces for
K are considered to be equivalent if there is an isotopy of S3 taking one surface to the other.
Fiberedness of a knot is known as a sufficient condition for which its minimal genus Seifert
surface is unique (see [3]). However, there are many known examples of knots with non-isotopic
minimal genus Seifert surfaces. See for instance [1, 10, 15, 16, 19, 31]. In [32] I find a family
of knots with trivial Alexander polynomial with two minimal genus Seifert surfaces for each
member in the family. This construction provides the first use of sutured Floer homology and
not merely its Euler characteristic (a classical torsion) to distinguish the Seifert surfaces. The
latter fact follows from the triviality of the Alexander polynomials.

Theorem 0.5. Let P pK1,K2q be the knot obtained by plumbing two knotted annuli with arbit-
rary knots K1 and K2 as in Figure 1, with framings l and 0, respectively, l � 0. Changing the
plumbing results in the same knot, but two inequivalent Seifert surfaces, R and R

1

.

The technique to prove this theorem, begins by noting that the surfaces’ complements have
a particular structure called a sutured manifold [5]. One cannot possibly use only the rank of
SFH of minimal genus Seifert surfaces’ complements to distinguish them, since the rank in this
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Figure 1. The above pictures are over/under plumbings of two twisted annuli, R and

R
1

respectively, both are bounded by the same knot, P pK1,K2q, where K1 is the right
handed trefoil and K2 is the left handed trefoil. These lead to two distinguished Seifert
surfaces R and R

1

, up to equivalence, for the knot P pK1,K2q.

case depends only on the knot [14, Theorem 1.5]. Therefore, we need to know the structure of
SFH as a Spinc-graded group if we are able to use it to show that the two surfaces are not
equivalent. Combining the sutured Floer homology of surfaces’ complements with the Seifert
form, turns out to be a useful tool in distinguishing different Seifert surfaces [10].

The reason I was interested in the particular knots is twofold. First, classical methods (con-
sidering the invariants of the homeomorphism type of the surfaces’ complements, e.g the fun-
damental group) fail in distinguishing the two Seifert surfaces. Second, they have isomorphic
SFH groups.

3. Current Research

3.1 L-spaces and left-orderability

The overarching goal of my recent results [12, 33] is to look for possible characterizations of
L-spaces that do not reference Heegaard Floer homology. Examples of L-spaces include lens
spaces and all connected sums of manifolds with elliptic geometry. These examples also have
the property that their fundamental groups do not admit any left ordering.

Definition 0.6. A non-trivial group G is called left-orderable if there exists a strict total or-
dering   on its elements such that g   h implies fg   fh for all elements f, g, h P G.

The following conjecture for all L-spaces was made in [2]:

Conjecture 0.7. A rational homology three-sphere, Y , is an L-space if and only if π1pY q is not
left-orderable.

In the light of this conjecture and Theorem 0.2, Hom, Lidman and I pose another conjecture:

Conjecture 0.8. Let P pKq � S3 denote the satellite knot with companion K and pattern P . If
P pKq has a non-left-orderable surgery, then both P and K admit non-left-orderable surgeries.
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At this point, we can prove that P admits a non-left-orderable surgery when P is a Berge-Gabai
knot [4]. Recall that L-spaces do not admit taut foliations [23]. It is natural to wonder if L-spaces
can be characterized as those closed, connected three-manifolds that admit no taut foliations:

Conjecture 0.9. A rational homology three-sphere, Y , is an L-space if and only if Y admits
no taut foliations.

4. Future Research

In ongoing work with David Krcatovich, I hope to produce more L-space satellite operations,
choosing the patterns from the list of L-space twisted torus knots in [33]. Our strategy is to
explicitly compute the knot Floer complex associated to such satellite knots, using the genus
one Heegaard diagrams constructed for the L-space twisted pp, kp�1q torus knots together with
techniques from bordered Heegaard Floer homology.

Another aspect of the Ozsváth-Szabó invariants that intrigues me is their relationship to
foliations. Some of the most powerful results in Heegaard Floer theory are related to the existence
of certain foliations on three-manifolds. I am particularly interested in classifying taut foliations
on the complements of L-space knots. More precisely, it is known that if K is an L-space knot,

then S3
r pKq possesses no taut foliation whenever r ¥ 2gpKq � 1. Therefore, S3 �

�

nbpKq admits
no taut foliation with lines of slope r ¥ 2gpKq�1 with r P Q, else a Dehn filling with coefficient

r extends the taut foliation of S3�
�

nbpKq to S3
r pKq. In the light of Conjecture 0.9 and Remark

0.3, for K an L-space knot, it seems reasonable to expect taut foliations on S3
r pKq whenever

r   2gpKq � 1. The case for the right handed trefoil is adduced in [29] where the foliations are
constructed on the complement, with slope of the lines of the foliation on the boundary varying
in the interval p�8, 1q. Similar techniques have been used for the case of torus knots in [21].
Building on these works, it would be useful to apply these constructive techniques to the L-space
twisted torus knots of [33].

Another area of low dimensional topology where the Ozsváth-Szabó invariants have had a
significant impact is in the study of Dehn surgery. One example is the cosmetic surgery problem:

Conjecture 0.10. Two surgeries on a nontrivial knot with non-equivalent slopes are never
homeomorphic as oriented manifolds.

For knots in S3, Ni and Wu reduce the conjecture to case where the slopes are negatives of
each other [22]. Their result draws on the close relationship between the knot Floer homology
invariants of a knot K and the Ozsváth-Szabó invariants of S3

r pKq. Is it possible to extend this
result and prove that these slopes must be trivial? Is it possible to obtain a similar obstruction
when K is a knot in a rational homology three-sphere and not necessarily in S3? Also note that
two homeomorphic three-manifolds must have isomorphic linking forms where the linking form
of a three manifold Y is the non-degenerate form

ΦM : TorY b TorY Ñ Q{Z

on the torsion subgroup TorY of H1pY ;Zq defined by ΦY pa b bq � α � τ{n. Note that α is
any 1-cycle representing a and τ is any 2-chain bounded by a positive integral multiple nβ of a
1-cycle β representing b. When do two different surgeries on a knot result in equivalent linking
forms? These are all questions I would like to explore.
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[25] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and three-manifold invariants: prop-
erties and applications. Ann. of Math., 159(3):1159–1245, 2004.
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