
Chapter 9. Boundary Value Problems

We study the a simple case of the Sturm-Liouville Problem, we then present how to compute
the Fourier series expansion of continuous and discontinuous functions. We end this chapter
introducing the separation of variables method to find solutions of a partial differential
equation, the heat equation.
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9.1. Eigenfunction Problems

In this Section we consider second order, linear, ordinary differential equations. In the
first half of the Section we study boundary value problems for these equations and in the
second half we focus on a particular type of boundary value problems, called the eigenvalue-
eigenfunction problem for these equations.

9.1.1. Two-Point Boundary Value Problems. We start with the definition of a two-
point boundary value problem.

Definition 9.1.1. A two-point boundary value problem (BVP) is the following: Find
solutions to the differential equation

y′′ + a1(x) y′ + a0(x) y = b(x)

satisfying the boundary conditions (BC)

b1 y(x1) + b2 y
′(x1) = y1,

b̃1 y(x2) + b̃2 y
′(x2) = y2,

where b1, b2, b̃1, b̃2, x1, x2, y1, and y2 are given and x1 6= x2. The boundary conditions are
homogeneous iff y1 = 0 and y2 = 0

Remarks:

(a) The two boundary conditions are held at different points, x1 6= x2.
(b) Both y and y′ may appear in the boundary condition.

Example 9.1.1: We now show four examples of boundary value problems that differ only
on the boundary conditions: Solve the different equation

y′′ + a1 y
′ + a0 y = e−2t

with the boundary conditions at x1 = 0 and x2 = 1 given below.

(a)

Boundary Condition:

{
y(0) = y1,

y(1) = y2,

}
which is the case

{
b1 = 1, b2 = 0,

b̃1 = 1, b̃2 = 0.

}
(b)

Boundary Condition:

{
y(0) = y1,

y′(1) = y2,

}
which is the case

{
b1 = 1, b2 = 0,

b̃1 = 0, b̃2 = 1.

}
(c)

Boundary Condition:

{
y′(0) = y1,

y(1) = y2,

}
which is the case

{
b1 = 0, b2 = 1,

b̃1 = 1, b̃2 = 0.

}
(d)

Boundary Condition:

{
y′(0) = y1,

y′(1) = y2,

}
which is the case

{
b1 = 0, b2 = 1,

b̃1 = 0, b̃2 = 1.

}
(e)

BC:

{
2 y(0) + y′(0) = y1,

y′(1) + 3 y′(1) = y2,

}
which is the case

{
b1 = 2, b2 = 1,

b̃1 = 1, b̃2 = 3.

}
C
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9.1.2. Comparison: IVP and BVP. We now review the initial boundary value problem
for the equation above, which was discussed in Sect. ??, where we showed in Theorem ??
that this initial value problem always has a unique solution.

Definition 9.1.2 (IVP). Find all solutions of the differential equation y′′+ a1 y
′+ a0 y = 0

satisfying the initial condition (IC)

y(t0) = y0, y′(t0) = y1. (9.1.1)

Remarks: In an initial value problem we usually the following happens.

• The variable t represents time.
• The variable y represents position.
• The IC are position and velocity at the initial time.

A typical boundary value problem that appears in many applications is the following.

Definition 9.1.3 (BVP). Find all solutions of the differential equation y′′+a1 y
′+a0 y = 0

satisfying the boundary condition (BC)

y(0) = y0, y(L) = y1, L 6= 0. (9.1.2)

Remarks: In a boundary value problem we usually the following happens.

• The variable x represents position.
• The variable y may represents a physical quantity such us temperature.
• The BC are the temperature at two different positions.

The names “initial value problem” and “boundary value problem” come from physics.
An example of the former is to solve Newton’s equations of motion for the position function
of a point particle that starts at a given initial position and velocity. An example of the
latter is to find the equilibrium temperature of a cylindrical bar with thermal insulation on
the round surface and held at constant temperatures at the top and bottom sides.

Let’s recall an important result we saw in § ?? about solutions to initial value problems.

Theorem 9.1.4 (IVP). The equation y′′+a1 y
′+a0 y = 0 with IC y(t0) = y0 and y′(t0) = y1

has a unique solution y for each choice of the IC.

The solutions to boundary value problems are more complicated to describe. A boundary
value problem may have a unique solution, or may have infinitely many solutions, or may
have no solution, depending on the boundary conditions. In the case of the boundary value
problem in Def. 9.1.3 we get the following.

Theorem 9.1.5 (BVP). The equation y′′+a1 y
′+a0 y = 0 with BC y(0) = y0 and y(L) = y1,

wilt L 6= 0 and with r± roots of the characteristic polynomial p(r) = r2 + a1r + a0, satisfy
the following.

(A) If r+ 6= r- are reals, then the BVP above has a unique solution for all y0, y1 ∈ R.
(B) If r± = α± i β are complex, with α, β ∈ R, then the solution of the BVP above belongs

to one of the following three possibilities:
(i) There exists a unique solution;

(ii) There exists infinitely many solutions;
(iii) There exists no solution.



4

Proof of Theorem 9.1.5:
Part (A): If r+ 6= r- are reals, then the general solution of the differential equation is

y(x) = c+ e
r+x + c- e

r-x.

The boundary conditions are

y0 = y(0) = c+ + c-

y1 = y(L) = c+ e
c+L + c- e

c-L

}
⇔

[
1 1

er+L er-L

] [
c+
c-

]
=

[
y0
y1

]
.

This system for c+, c- has a unique solution iff the coefficient matrix is invertible. But its
determinant is ∣∣∣∣ 1 1

er+L er-L

∣∣∣∣ = er-L − er+L.

Therefore, if the roots r+ 6= r- are reals, then er-L 6= er+L, hence there is a unique solution
c+, c-, which in turn fixes a unique solution y of the BVP.

In the case that r+ = r- = r0, then we have to start over, since the general solution of the
differential equation is

y(x) = (c1 + c2 x) er0x, c1, c2 ∈ R.
Again, the boundary conditions in Eq. (9.1.2) determine the values of the constants c1 and
c2 as follows:

y0 = y(0) = c1

y1 = y(L) = c1e
r0L + c2Le

r0L

}
⇒

[
1 0

er0L Ler0L

] [
c1
c2

]
=

[
y0
y1

]
.

This system for c1, c2 has a unique solution iff the coefficient matrix is invertible. But its
determinant is ∣∣∣∣ 1 0

er0L Ler0L

∣∣∣∣ = Ler0L

So, for L 6= 0 the determinant above is nonzero, then there is a unique solution c1, c2, which
in turn fixes a unique solution y of the BVP.
Part (B): If r± = α± iβ, that is complex, then

er+-L = e(α±iβ)L = eαL(cos(βL)± i sin(βL)),

therefore

er-L − er+L = eαL
(
cos(βL)− i sin(βL)− cos(βL)− i sin(βL)

)
= −2i eαL sin(βL).

We conclude that

er-L − er+L = −2i eαL sin(βL) = 0 ⇔ βL = nπ.

So for βL 6= nπ the BVP has a unique solution, case (Bi). But for βL = nπ the BVP has
either no solution or infinitely many solutions, cases (Bii) and (Biii). This establishes the
Theorem. �

Example 9.1.2: Find all solutions to the BVPs y′′ + y = 0 with the BCs:

(a)

{
y(0) = 1,

y(π) = 0.
(b)

{
y(0) = 1,

y(π/2) = 1.
(c)

{
y(0) = 1,

y(π) = −1.

Solution: We first find the roots of the characteristic polynomial r2 + 1 = 0, that is,
r± = ±i. So the general solution of the differential equation is

y(x) = c1 cos(x) + c2 sin(x).
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BC (a):

1 = y(0) = c1 ⇒ c1 = 1.

0 = y(π) = −c1 ⇒ c1 = 0.

Therefore, there is no solution.
BC (b):

1 = y(0) = c1 ⇒ c1 = 1.

1 = y(π/2) = c2 ⇒ c2 = 1.

So there is a unique solution y(x) = cos(x) + sin(x).
BC (c):

1 = y(0) = c1 ⇒ c1 = 1.

−1 = y(π) = −c1 ⇒ c2 = 1.

Therefore, c2 is arbitrary, so we have infinitely many solutions

y(x) = cos(x) + c2 sin(x), c2 ∈ R.

C

Example 9.1.3: Find all solutions to the BVPs y′′ + 4 y = 0 with the BCs:

(a)

{
y(0) = 1,

y(π/4) = −1.
(b)

{
y(0) = 1,

y(π/2) = −1.
(c)

{
y(0) = 1,

y(π/2) = 1.

Solution: We first find the roots of the characteristic polynomial r2 + 4 = 0, that is,
r± = ±2i. So the general solution of the differential equation is

y(x) = c1 cos(2x) + c2 sin(2x).

BC (a):

1 = y(0) = c1 ⇒ c1 = 1.

−1 = y(π/4) = c2 ⇒ c2 = −1.

Therefore, there is a unique solution y(x) = cos(2x)− sin(2x).
BC (b):

1 = y(0) = c1 ⇒ c1 = 1.

−1 = y(π/2) = −c1 ⇒ c1 = 1.

So, c2 is arbitrary and we have infinitely many solutions

y(x) = cos(2x) + c2 sin(2x), c2 ∈ R.

BC (c):

1 = y(0) = c1 ⇒ c1 = 1.

1 = y(π/2) = −c1 ⇒ c2 = −1.

Therefore, we have no solution. C
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9.1.3. Eigenfunction Problems. We now focus on boundary value problems that have
infinitely many solutions. A particular type of these problems are called an eigenfunction
problems. They are similar to the eigenvector problems we studied in § ??. Recall that
the eigenvector problem is the following: Given an n× n matrix A, find all numbers λ and
nonzero vectors v solution of the algebraic linear system

Av = λv.

We saw that for each λ there are infinitely many solutions v, because if v is a solution so is
any multiple av. An eigenfunction problem is something similar.

Definition 9.1.6. An eigenfunction problem is the following: Given a linear operator
L(y) = y′′ + a1 y

′ + a0 y, find a number λ and a nonzero function y solution of

L(y) = −λy,

with homogeneous boundary conditions

b1 y(x1) + b2 y
′(x1) = 0,

b̃1 y(x2) + b̃2 y
′(x2) = 0.

Remarks:

• Notice that y = 0 is always a solution of the BVP above.
• Eigenfunctions are the nonzero solutions of the BVP above.
• Hence, the eigenfunction problem is a BVP with infinitely many solutions.
• So, we look for λ such that the operator L(y) + λ y has characteristic polynomial

with complex roots.
• So, λ is such that L(y) + λ y has oscillatory solutions.
• Our examples focus on the linear operator L(y) = y′′.

Example 9.1.4: Find all numbers λ and nonzero functions y solutions of the BVP

y′′ + λ y = 0, with y(0) = 0, y(L) = 0, L > 0.

Solution: We divide the problem in three cases: (a) λ < 0, (b) λ = 0, and (c) λ > 0.
Case (a): λ = −µ2 < 0, so the equation is y′′ − µ2y = 0. The characteristic equation is

r2 − µ2 = 0 ⇒ r+- = ±µ.

The general solution is y = c+ e
µx + c- e

−µx. The BC imply

0 = y(0) = c+ + c-, 0 = y(L) = c+ e
µL + c- e

−µL.

So from the first equation we get c+ = −c-, so

0 = −c- eµL + c- e
−µL ⇒ −c-(eµL − e−µL) = 0 ⇒ c- = 0, c+ = 0.

So the only the solution is y = 0, then there are no eigenfunctions with negative eigenvalues.
Case (b): λ = 0, so the differential equation is

y′′ = 0 ⇒ y = c0 + c1x.

The BC imply

0 = y(0) = c0, 0 = y(L) = c1L ⇒ c1 = 0.

So the only solution is y = 0, then there are no eigenfunctions with eigenvalue λ = 0.
Case (c): λ = µ2 > 0, so the equation is y′′ + µ2y = 0. The characteristic equation is

r2 + µ2 = 0 ⇒ r+- = ±µi.
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The general solution is y = c+ cos(µx) + c- sin(µx). The BC imply

0 = y(0) = c+, 0 = y(L) = c+ cos(µL) + c- sin(µL).

Since c+ = 0, the second equation above is

c- sin(µL) = 0, c- 6= 0 ⇒ sin(µL) = 0 ⇒ µnL = nπ.

So we get µn = nπ/L, hence the eigenvalue eigenfunction pairs are

λn =
(nπ
L

)2
, yn(x) = cn sin

(nπx
L

)
.

Since we need only one eigenfunction for each eigenvalue, we choose cn = 1, and we get

λn =
(nπ
L

)2
, yn(x) = sin

(nπx
L

)
, n > 1.

C

Example 9.1.5: Find the numbers λ and the nonzero functions y solutions of the BVP

y′′ + λy = 0, y(0) = 0, y′(L) = 0, L > 0.

Solution: We divide the problem in three cases: (a) λ < 0, (b) λ = 0, and (c) λ > 0.
Case (a): Let λ = −µ2, with µ > 0, so the equation is y′′ − µ2 y = 0. The characteristic
equation is

r2 − µ2 = 0 ⇒ r+- = ±µ,
The general solution is y(x) = c1e

−µx + c2e
µx. The BC imply

0 = y(0) = c1 + c2,

0 = y′(L) = −µc1e−µL + µc2e
µL

}
⇒

[
1 1

−µe−µL µeµL

] [
c1
c2

]
=

[
0
0

]
.

The matrix above is invertible, because∣∣∣∣ 1 1
−µe−µL µeµL

∣∣∣∣ = µ
(
eµL + e−µL

)
6= 0.

So, the linear system above for c1, c2 has a unique solution c1 = c2 = 0. Hence, we get the
only solution y = 0. This means there are no eigenfunctions with negative eigenvalues.
Case (b): Let λ = 0, so the differential equation is

y′′ = 0 ⇒ y(x) = c1 + c2x, c1, c2 ∈ R.

The boundary conditions imply the following conditions on c1 and c2,

0 = y(0) = c1, 0 = y′(L) = c2.

So the only solution is y = 0. This means there are no eigenfunctions with eigenvalue λ = 0.
Case (c): Let λ = µ2, with µ > 0, so the equation is y′′ + µ2 y = 0. The characteristic
equation is

r2 + µ2 = 0 ⇒ r+- = ±µ i.
The general solution is y(x) = c1 cos(µx) + c2 sin(µx). The BC imply

0 = y(0) = c1,

0 = y′(L) = −µc1 sin(µL) + µc2 cos(µL)

}
⇒ c2 cos(µL) = 0.

Since we are interested in non-zero solutions y, we look for solutions with c2 6= 0. This
implies that µ cannot be arbitrary but must satisfy the equation

cos(µL) = 0 ⇔ µnL = (2n− 1)
π

2
, n > 1.
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We therefore conclude that the eigenvalues and eigenfunctions are given by

λn = − (2n− 1)2π2

4L2
, yn(x) = cn sin

( (2n− 1)πx

2L

)
, n > 1.

Since we only need one eigenfunction for each eigenvalue, we choose cn = 1, and we get

λn = − (2n− 1)2π2

4L2
, yn(x) = sin

( (2n− 1)πx

2L

)
, n > 1.

C

Example 9.1.6: Find the numbers λ and the nonzero functions y solutions of the BVP

x2 y′′ − x y′ = −λ y, y(1) = 0, y(`) = 0, ` > 1.

Solution: Let us rewrite the equation as

x2 y′′ − x y′ + λy = 0.

This is an Euler equidimensional equation. From § ?? we know we need to look for the
solutions r+- of the indicial polynomial

r(r − 1)− r + λ = 0 ⇒ r2 − 2r + λ = 0 ⇒ r± = 1±
√

1− λ.

Case (a): Let 1− λ = 0, so we have a repeated root r+ = r- = 1. The general solution to
the differential equation is

y(x) =
(
c1 + c2 ln(x)

)
x.

The boundary conditions imply the following conditions on c1 and c2,

0 = y(1) = c1,

0 = y(`) =
(
c1 + c2 ln(`)

)
`

}
⇒ c2` ln(`) = 0 ⇒ c2 = 0.

So the only solution is y = 0. This means there are no eigenfunctions with eigenvalue λ = 1.

Case (b): Let 1−λ > 0, so we can rewrite it as 1−λ = µ2, with µ > 0. Then, r± = 1±µ,
and so the general solution to the differential equation is given by

y(x) = c1x
(1−µ) + c2x

(1+µ),

The boundary conditions imply the following conditions on c1 and c2,

0 = y(1) = c1 + c2,

0 = y(`) = c1`
(1−µ) + c2`

(1+µ)

}
⇒

[
1 1

`(1−µ) `(1+µ)

] [
c1
c2

]
=

[
0
0

]
.

The matrix above is invertible, because∣∣∣∣ 1 1
`(1−µ) `(1+µ)

∣∣∣∣ = `
(
`µ − `−µ

)
6= 0 ⇔ ` 6= ±1.

Since ` > 1, the matrix above is invertible, and the linear system for c1, c2 has a unique
solution given by c1 = c2 = 0. Hence we get the only solution y = 0. This means there are
no eigenfunctions with eigenvalues λ < 1.

Case (c): Let 1−λ < 0, so we can rewrite it as 1−λ = −µ2, with µ > 0. Then r± = 1± iµ,
and so the general solution to the differential equation is

y(x) = x
[
c1 cos

(
µ ln(x)

)
+ c2 sin

(
µ ln(x)

)]
.

The boundary conditions imply the following conditions on c1 and c2,

0 = y(1) = c1,

0 = y(`) = c1` cos
(
µ ln(`)

)
+ c2` sin

(
(µ ln(`)

)} ⇒ c2` sin
(
µ ln(`)

)
= 0.
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Since we are interested in nonzero solutions y, we look for solutions with c2 6= 0. This
implies that µ cannot be arbitrary but must satisfy the equation

sin
(
µ ln(`)

)
= 0 ⇔ µn ln(`) = nπ, n > 1.

Recalling that 1− λn = −µ2
n, we get λn = 1 + µ2

n, hence,

λn = 1 +
n2π2

ln2(`)
, yn(x) = cnx sin

(nπ ln(x)

ln(`)

)
, n > 1.

Since we only need one eigenfunction for each eigenvalue, we choose cn = 1, and we get

λn = 1 +
n2π2

ln2(`)
, yn(x) = x sin

(nπ ln(x)

ln(`)

)
, n > 1.

C
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