
6.5. Diagonalizable Matrices

It is useful to introduce few more concepts, that are common in the literature.

Definition 6.5.1. The characteristic polynomial of an n× n matrix A is the function

p(λ) = det(A− λI).

Example 6.5.1: Find the characteristic polynomial of matrix A =

[
1 3
3 1

]
.

Solution: We need to compute the determinant

p(λ) = det(A− λI) =

∣∣∣∣(1− λ) 3
3 (1− λ)

∣∣∣∣ = (1− λ)2 − 9 = λ2 − 2λ+ 1− 9.

We conclude that the characteristic polynomial is p(λ) = λ2 − 2λ− 8. C

Since the matrix A in this example is 2× 2, its characteristic polynomial has degree two.
One can show that the characteristic polynomial of an n × n matrix has degree n. The
eigenvalues of the matrix are the roots of the characteristic polynomial. Different matrices
may have different types of roots, so we try to classify these roots in the following definition.

Definition 6.5.2. Given an n×n matrix A with real eigenvalues λi, where i = 1, · · · , k 6 n,
it is always possible to express the characteristic polynomial of A as

p(λ) = (λ− λ1)
r1 · · · (λ− λk)rk .

The number ri is called the algebraic multiplicity of the eigenvalue λi. Furthermore, the
geometric multiplicity of an eigenvalue λi, denoted as si, is the maximum number of
eigenvectors of λi that form a linearly independent set.

Example 6.5.2: Find the eigenvalues algebraic and geometric multiplicities of the matrix

A =

[
1 3
3 1

]
Solution: In order to find the algebraic multiplicity of the eigenvalues we need first to find
the eigenvalues. We now that the characteristic polynomial of this matrix is given by

p(λ) =

∣∣∣∣(1− λ) 3
3 (1− λ)

∣∣∣∣ = (λ− 1)2 − 9.

The roots of this polynomial are λ1 = 4 and λ2 = −2, so we know that p(λ) can be rewritten
in the following way,

p(λ) = (λ− 4)(λ+ 2).

We conclude that the algebraic multiplicity of the eigenvalues are both one, that is,

λ1 = 4, r1 = 1, and λ2 = −2, r2 = 1.

In order to find the geometric multiplicities of matrix eigenvalues we need first to find the
matrix eigenvectors. This part of the work was already done in the Example ?? above and
the result is

λ1 = 4, v(1) =

[
1
1

]
, λ2 = −2, v(2) =

[
−1

1

]
.

From this expression we conclude that the geometric multiplicities for each eigenvalue are
just one, that is,

λ1 = 4, s1 = 1, and λ2 = −2, s2 = 1.
C
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The following example shows that two matrices can have the same eigenvalues, and so the
same algebraic multiplicities, but different eigenvectors with different geometric multiplici-
ties.

Example 6.5.3: Find the eigenvalues and eigenvectors of the matrix A =

3 0 1
0 3 2
0 0 1

.

Solution: We start finding the eigenvalues, the roots of the characteristic polynomial

p(λ) =

∣∣∣∣∣∣
(3− λ) 0 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 1)(λ− 3)2 ⇒
{
λ1 = 1, r1 = 1,

λ2 = 3, r2 = 2.

We now compute the eigenvector associated with the eigenvalue λ1 = 1, which is the solution
of the linear system

(A− I)v(1) = 0 ⇔

2 0 1
0 2 2
0 0 0


v

(1)
1

v
(1)
2

v
(1)
3

 =

0
0
0

 .
After the few Gauss elimination operation we obtain the following,

2 0 1
0 2 2
0 0 0

→
1 0 1

2
0 1 1
0 0 0

 ⇒


v
(1)
1 = −v

(1)
3

2
,

v
(1)
2 = −v(1)3 ,

v
(1)
3 free.

Therefore, choosing v
(1)
3 = 2 we obtain that

v(1) =

−1
−2
2

 , λ1 = 1, r1 = 1, s1 = 1.

In a similar way we now compute the eigenvectors for the eigenvalue λ2 = 3, which are all
solutions of the linear system

(A− 3I)v(2) = 0 ⇔

0 0 1
0 0 2
0 0 −2


v

(2)
1

v
(2)
2

v
(2)
3

 =

0
0
0

 .
After the few Gauss elimination operation we obtain the following,0 0 1

0 0 2
0 0 −2

→
0 0 1

0 0 0
0 0 0

 ⇒


v
(2)
1 free,

v
(2)
2 free,

v
(2)
3 = 0.

Therefore, we obtain two linearly independent solutions, the first one v(2) with the choice

v
(2)
1 = 1, v

(2)
2 = 0, and the second one w(2) with the choice v

(2)
1 = 0, v

(2)
2 = 1, that is

v(2) =

1
0
0

 , w(2) =

0
1
0

 , λ2 = 3, r2 = 2, s2 = 2.

Summarizing, the matrix in this example has three linearly independent eigenvectors. C



3

Example 6.5.4: Find the eigenvalues and eigenvectors of the matrix A =

3 1 1
0 3 2
0 0 1

.

Solution: Notice that this matrix has only the coefficient a12 different from the previous
example. Again, we start finding the eigenvalues, which are the roots of the characteristic
polynomial

p(λ) =

∣∣∣∣∣∣
(3− λ) 1 1

0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣ = −(λ− 1)(λ− 3)2 ⇒
{
λ1 = 1, r1 = 1,

λ2 = 3, r2 = 2.

So this matrix has the same eigenvalues and algebraic multiplicities as the matrix in the
previous example. We now compute the eigenvector associated with the eigenvalue λ1 = 1,
which is the solution of the linear system

(A− I)v(1) = 0 ⇔

2 1 1
0 2 2
0 0 0


v

(1)
1

v
(1)
2

v
(1)
3

 =

0
0
0

 .
After the few Gauss elimination operation we obtain the following,2 1 1

0 2 2
0 0 0

→
1 1 1

0 1 1
0 0 0

→
1 0 0

0 1 1
0 0 0

 ⇒


v
(1)
1 = 0,

v
(1)
2 = −v(1)3 ,

v
(1)
3 free.

Therefore, choosing v
(1)
3 = 1 we obtain that

v(1) =

 0
−1
1

 , λ1 = 1, r1 = 1, s1 = 1.

In a similar way we now compute the eigenvectors for the eigenvalue λ2 = 3. However, in
this case we obtain only one solution, as this calculation shows,

(A− 3I)v(2) = 0 ⇔

0 1 1
0 0 2
0 0 −2


v

(2)
1

v
(2)
2

v
(2)
3

 =

0
0
0

 .
After the few Gauss elimination operation we obtain the following,0 1 1

0 0 2
0 0 −2

→
0 1 0

0 0 1
0 0 0

 ⇒


v
(2)
1 free,

v
(2)
2 = 0,

v
(2)
3 = 0.

Therefore, we obtain only one linearly independent solution, which corresponds to the choice

v
(2)
1 = 1, that is,

v(2) =

1
0
0

 , λ2 = 3, r2 = 2, s2 = 1.

Summarizing, the matrix in this example has only two linearly independent eigenvectors,
and in the case of the eigenvalue λ2 = 3 we have the strict inequality

1 = s2 < r2 = 2.

C
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We first introduce the notion of a diagonal matrix. Later on we define a diagonalizable
matrix as a matrix that can be transformed into a diagonal matrix by a simple transforma-
tion.

Definition 6.5.3. An n× n matrix A is called diagonal iff A =

a11 · · · 0
...

. . .
...

0 · · · ann

.

That is, a matrix is diagonal iff every nondiagonal coefficient vanishes. From now on we use
the following notation for a diagonal matrix A:

A = diag
[
a11, · · · , ann

]
=

a11 · · · 0
...

. . .
...

0 · · · ann

 .
This notation says that the matrix is diagonal and shows only the diagonal coefficients,
since any other coefficient vanishes. The next result says that the eigenvalues of a diagonal
matrix are the matrix diagonal elements, and it gives the corresponding eigenvectors.

Theorem 6.5.4. If D = diag[d11, · · · , dnn], then eigenpairs of D are

λ1 = d11, v(1) =


1
0
...
0

 , · · · , λn = dnn, v(n) =


0
...
0
1

 .
Diagonal matrices are simple to manipulate since they share many properties with num-

bers. For example the product of two diagonal matrices is commutative. It is simple to
compute power functions of a diagonal matrix. It is also simple to compute more involved
functions of a diagonal matrix, like the exponential function.

Example 6.5.5: For every positive integer n find An, where A =

[
2 0
0 3

]
.

Solution: We start computing A2 as follows,

A2 = AA =

[
2 0
0 3

] [
2 0
0 3

]
=

[
22 0
0 32

]
.

We now compute A3,

A3 = A2A =

[
22 0
0 32

] [
2 0
0 3

]
=

[
23 0
0 33

]
.

Using induction, it is simple to see that An =

[
2n 0
0 3n

]
. C

Many properties of diagonal matrices are shared by diagonalizable matrices. These are
matrices that can be transformed into a diagonal matrix by a simple transformation.

Definition 6.5.5. An n×n matrix A is called diagonalizable iff there exists an invertible
matrix P and a diagonal matrix D such that

A = PDP−1.

Remarks:
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(a) Systems of linear differential equations are simple to solve in the case that the coefficient
matrix is diagonalizable. One decouples the differential equations, solves the decoupled
equations, and transforms the solutions back to the original unknowns.

(b) Not every square matrix is diagonalizable. For example, matrix A below is diagonaliz-
able while B is not,

A =

[
1 3
3 1

]
, B =

1

2

[
3 1
−1 5

]
.

Example 6.5.6: Show that matrix A =

[
1 3
3 1

]
is diagonalizable, where

P =

[
1 −1
1 1

]
and D =

[
4 0
0 −2

]
.

Solution: That matrix P is invertible can be verified by computing its determinant,
det(P ) = 1 − (−1) = 2. Since the determinant is nonzero, P is invertible. Using linear

algebra methods one can find out that the inverse matrix is P−1 =
1

2

[
1 1
−1 1

]
. Now we

only need to verify that PDP−1 is indeed A. A straightforward calculation shows

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
=

[
4 2
4 −2

]
1

2

[
1 1
−1 1

]
=

[
2 1
2 −1

] [
1 1
−1 1

]
=

[
1 3
3 1

]
⇒ PDP−1 = A.

C

There is a deep relation between the eigenpairs of a matrix and whether that matrix is
diagonalizable.

Theorem 6.5.6 (Diagonalizable Matrix). An n × n matrix A is diagonalizable iff A has
a linearly independent set of n eigenvectors. Furthermore, if λi, vi, for i = 1, · · · , n, are
eigenpairs of A, then

A = PDP−1, P = [v1, · · · , vn], D = diag
[
λ1, · · · , λn

]
.

Proof of Theorem 6.5.6:
(⇒) Since matrix A is diagonalizable, there exist an invertible matrix P and a diagonal

matrix D such that A = PDP−1. Multiply this equation by P−1 on the left and by P on
the right, we get

D = P−1AP. (6.5.1)

Since n× n matrix D is diagonal, it has a linearly independent set of n eigenvectors, given
by the column vectors of the identity matrix, that is,

De(i) = diie
(i), D = diag

[
d11, · · · , dnn

]
, I =

[
e(1), · · · , e(n)

]
.
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So, the pair dii, e
(i) is an eigenvalue-eigenvector pair of D, for i = 1 · · · , n. Using this

information in Eq. (6.5.1) we get

diie
(i) = De(i) = P−1APe(i) ⇒ A

(
Pe(i)

)
= dii

(
Pe(i)

)
,

where the last equation comes from multiplying the former equation by P on the left. This
last equation says that the vectors v(i) = Pe(i) are eigenvectors of A with eigenvalue dii.
By definition, v(i) is the i-th column of matrix P , that is,

P =
[
v(1), · · · , v(n)

]
.

Since matrix P is invertible, the eigenvectors set {v(1), · · · , v(n)} is linearly independent.
This establishes this part of the Theorem.

(⇐) Let λi, v
(i) be eigenvalue-eigenvector pairs of matrix A, for i = 1, · · · , n. Now use the

eigenvectors to construct matrix P =
[
v(1), · · · , v(n)

]
. This matrix is invertible, since the

eigenvector set {v(1), · · · , v(n)} is linearly independent. We now show that matrix P−1AP
is diagonal. We start computing the product

AP = A
[
v(1), · · · , v(n)

]
=
[
Av(1), · · · , Av(n)

]
,=
[
λ1v

(1) · · · , λnv(n)
]
.

that is,

P−1AP = P−1
[
λ1v

(1), · · · , λnv(n)
]

=
[
λ1P

−1v(1), · · · , λnP−1v(n)
]
.

At this point it is useful to recall that P−1 is the inverse of P ,

I = P−1P ⇔
[
e(1), · · · , e(n)

]
= P−1

[
v(1), · · · , v(n)

]
=
[
P−1v(1), · · · , P−1v(n)

]
.

So, e(i) = P−1v(i), for i = 1 · · · , n. Using these equations in the equation for P−1AP ,

P−1AP =
[
λ1e

(1), · · · , λne(n)
]

= diag
[
λ1, · · · , λn

]
.

Denoting D = diag
[
λ1, · · · , λn

]
we conclude that P−1AP = D, or equivalently

A = PDP−1, P =
[
v(1), · · · , v(n)

]
, D = diag

[
λ1, · · · , λn

]
.

This means that A is diagonalizable. This establishes the Theorem. �

Example 6.5.7: Show that matrix A =

[
1 3
3 1

]
is diagonalizable.

Solution: We know that the eigenvalue-eigenvector pairs are

λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1

1

]
.

Introduce P and D as follows,

P =

[
1 −1
1 1

]
⇒ P−1 =

1

2

[
1 1
−1 1

]
, D =

[
4 0
0 −2

]
.

We must show that A = PDP−1. This is indeed the case, since

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.

PDP−1 =

[
4 2
4 −2

]
1

2

[
1 1
−1 1

]
=

[
2 1
2 −1

] [
1 1
−1 1

]
We conclude, PDP−1 =

[
1 3
3 1

]
⇒ PDP−1 = A, that is, A is diagonalizable. C

With Theorem 6.5.6 we can show that a matrix is not diagonalizable.
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Example 6.5.8: Show that matrix B =
1

2

[
3 1
−1 5

]
is not diagonalizable.

Solution: We first compute the matrix eigenvalues. The characteristic polynomial is

p(λ) =

∣∣∣∣∣∣∣
(3

2
− λ
) 1

2

−1

2

(5

2
− λ
)
∣∣∣∣∣∣∣ =

(3

2
− λ
)(5

2
− λ

)
+

1

4
= λ2 − 4λ+ 4.

The roots of the characteristic polynomial are computed in the usual way,

λ =
1

2

[
4±
√

16− 16
]
⇒ λ = 2, r = 2.

We have obtained a single eigenvalue with algebraic multiplicity r = 2. The associated
eigenvectors are computed as the solutions to the equation (A− 2I)v = 0. Then,

(A− 2I) =


(3

2
− 2
) 1

2

−1

2

(5

2
− 2
)
 =


−1

2

1

2

−1

2

1

2

→
[
1 −1
0 0

]
⇒ v =

[
1
1

]
, s = 1.

We conclude that the biggest linearly independent set of eigenvalues for the 2× 2 matrix B
contains only one vector, insted of two. Therefore, matrix B is not diagonalizable. C

Theorem 6.5.6 shows the importance of knowing whether an n× n matrix has a linearly
independent set of n eigenvectors. However, more often than not, there is no simple way to
check this property other than to compute all the matrix eigenvectors. But there is a simpler
particular case, the case when an n×n matrix has n different eigenvalues. Then, we do not
need to compute the eigenvectors. The following result says that such matrix always have
a linearly independent set of n eigenvectors, hence, by Theorem 6.5.6, it is diagonalizable.

Theorem 6.5.7 (Different Eigenvalues). If an n × n matrix has n different eigenvalues,
then this matrix has a linearly independent set of n eigenvectors.

Proof of Theorem 6.5.7: Let λ1, · · · , λn be the eigenvalues of an n × n matrix A,
all different from each other. Let v(1), · · · , v(n) the corresponding eigenvectors, that is,
Av(i) = λiv

(i), with i = 1, · · · , n. We have to show that the set {v(1), · · · , v(n)} is linearly
independent. We assume that the opposite is true and we obtain a contradiction. Let us
assume that the set above is linearly dependent, that is, there are constants c1, · · · , cn, not
all zero, such that,

c1v
(1) + · · ·+ cnv

(n) = 0. (6.5.2)

Let us name the eigenvalues and eigenvectors such that c1 6= 0. Now, multiply the equation
above by the matrix A, the result is,

c1λ1v
(1) + · · ·+ cnλnv

(n) = 0.

Multiply Eq. (6.5.2) by the eigenvalue λn, the result is,

c1λnv
(1) + · · ·+ cnλnv

(n) = 0.

Subtract the second from the first of the equations above, then the last term on the right-
hand sides cancels out, and we obtain,

c1(λ1 − λn)v(1) + · · ·+ cn−1(λn−1 − λn)v(n−1) = 0. (6.5.3)
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Repeat the whole procedure starting with Eq. (6.5.3), that is, multiply this later equation
by matrix A and also by λn−1, then subtract the second from the first, the result is,

c1(λ1 − λn)(λ1 − λn−1)v(1) + · · ·+ cn−2(λn−2 − λn)(λn−2 − λn−1)v(n−2) = 0.

Repeat the whole procedure a total of n− 1 times, in the last step we obtain the equation

c1(λ1 − λn)(λ1 − λn−1) · · · (λ1 − λ3)(λ1 − λ2)v
(1) = 0.

Since all the eigenvalues are different, we conclude that c1 = 0, however this contradicts our
assumption that c1 6= 0. Therefore, the set of n eigenvectors must be linearly independent.
This establishes the Theorem. �

Example 6.5.9: Is matrix A =

[
1 1
1 1

]
diagonalizable?

Solution: We compute the matrix eigenvalues, starting with the characteristic polynomial,

p(λ) =

∣∣∣∣(1− λ) 1
1 (1− λ)

∣∣∣∣ = (1− λ)2 − 1 = λ2 − 2λ ⇒ p(λ) = λ(λ− 2).

The roots of the characteristic polynomial are the matrix eigenvalues,

λ1 = 0, λ2 = 2.

The eigenvalues are different, so by Theorem 6.5.7, matrix A is diagonalizable. C
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6.5.1. Exercises.

6.5.1.- . 6.5.2.- .
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