
Chapter 1. Modeling with Ordinary Differential Equations

1.1. Population Models: Exponential Growth, Logistic Equation,
Predator-Prey

Mathematical models attempt to describe various situations in physics, engineering, ecology,
biology, etc. and ultimately use these descriptions to answer a variety of questions. Ordinary
differential equations often study systems that evolve over time, but can depend on other
variables/parameters as well. The goal of a mathematical model is not to produce a perfect
copy of the real-life situation, but rather to capture the essential features that govern the
behavior of the system. What is essential is often a judgment call and will depend on the
questions we are trying to answer using the model. The modeling approach will greatly
depend on the situation (whether you use deterministic or stochastic models, discrete or
continuous models, ...), but the following steps are central to creating a mathematical model
in almost any setting.

Step 1. Clearly state all the assumptions.
Step 2. Describe all the independent variables, dependent variables, and param-

eters to be used in the model.
Step 3. Use your assumptions to derive equations relating the variables and parameters.
Step 4. Analyze the predictions of the model - do they make physical sense, do they

agree with your data? If not, you might need to revise your assumptions, going back to
Step 1.

The above steps probably seem very abstract at this point, but we will see how they are
applied to particular modeling scenarios in the next section.

1.2. Population Models: Exponential Growth, Logistic Equation,
Predator-Prey

1.2.1. Exponential Growth. As a first step, let us model population growth under the
assumption of unlimited resources. The approach we are going to take here could apply to a
population of bacteria in a large Petri dish, growth of mold on bread, population of rabbits
in a forest, human population, etc.

The main assumption we make is that given unlimited resources, the rate of growth of
the population is proportional to the size of the population. I.e., the more rabbits we have,
the more rabbits will be born.

Now, let us clearly denote all our variables and parameters.

• Let t denote time (independent variable),
• let P (t) denote the population (e.g. number of rabbits) at time t (dependent vari-

able),
• let k denote the constant of proportionality between the growth rate and the pop-

ulation size (growth-rate coefficient).

Recall that the rate of growth of P (t) is given by
dP

dt
. Given our assumption that the rate

of growth of the population P is proportional to P (t) with constant of proportionality k,
we arrive at

dP

dt
= kP. (1.2.1)

You might have already encountered this type of equation in Calculus II. It is one of the
simplest examples of separable equations, which will be studied in detail in Section ??.
We will postpone the derivation of the analytic solution to the next chapter. For now, to
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analyze the predictions of the model, let us look at the graphs of several functions satisfying
Equation 1.2.1 with different initial conditions (different values of P (0)).

t

P

Figure 1. Solutions of the exponential growth/decay equation 1.2.1 for
different values of the initial condition, fixed value of k.

Now, let us consider how the solutions depend on the parameter k. Before looking at the
graph below, try to predict what will happen to the graph if we increase k and what will
happen if we decrease k. Could we choose k to be negative? Why or why not?
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Figure 2. Solutions of the exponential growth/decay equation 1.2.1 for
different values of k, fixed initial condition.
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Under what conditions does this make physical sense? Is it realistic for the number of
rabbits to grow to infinity as t grows? This model, while very useful to predict the behavior
of the population in the short term, and while the population has not felt that resources are
not really unlimited, clearly has some limitations. For this reason we consider the so called
logistic model to account for limited resources (in terms of food, space, etc.).

1.2.2. Logistic Population Model. In this section we model population growth under
limited resources. We assume that if the population is small, the rate of growth of the
population is proportional to its size (as in the exponential growth model). However, if the
population is too large to be supported by the resources in the environment, we assume
the population will decrease. The terminology used by ecologists for the latter case is “The
population exceeds the carrying capacity of the environment.”

As in the previous model, we denote all our variables and parameters.

• Let t denote time,
• let P (t) denote the population at time t,
• let k denote the growth-rate coefficient for small values of P ,
• and finally, let N denote the carrying capacity.

That is, we assume that P (t) will decrease (i.e., P ′(t) < 0) provided P (t) > N and P ′(t) ≈
kP (t) if P is relatively small (compared to N). We are looking for the simplest equation
that would satisfy the above conditions. Thus, we are looking for an equation of the form

dP

dt
= kP · (???)

We would like (???) to be as simple as possible and such that it is positive for P < N
and negative for P > N . That is, something similar to N − P would do. However, we also
assumed that P ′(t) ≈ kP (t) if P is small, so we should divide (N − P ) by N , arriving at
the following model:

dP

dt
= kP

(
1 − P

N

)
. (1.2.2)

We refer to 1.2.2 as the logistic population model with growth rate k and carrying
capacity N . This is again a separable equation, for which we can obtain an analytic solution.
In Section ?? we will do qualitative analysis to see what the model predicts in the long run
(for large values of t).

1.2.3. Predator-Prey Systems. In many cases we might be interested in modeling the
interaction between two or more species. In Chapter ?? we will study a variety of examples
of predator-prey (also referred to as Lotka-Volterra) systems, competing species, symbiosis,
etc. In this section, we will briefly discuss modeling the population of one species of predator
and one species of prey living in the same environment. Consider, for example, foxes and
rabbits living in a forest. We make the following assumptions.

(1) In the absence of foxes, the rabbits grow exponentially (we assume unlimited vege-
tation).

(2) The death rate of rabbits is proportional to the rate at which foxes and rabbits
interact (usually modeled as the product of the two populations).

(3) In the absence of rabbits, the foxes die out at a rate proportional to their numbers
(exponential decay).

(4) The birth rate of foxes is proportional to the number of rabbits and number of foxes
(the more rabbits there are the more foxes are born and the more foxes there are
the more foxes are born).

We will use the following notation:
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• As usual, t denotes time.
• Let F (t) denote the number of foxes at time t,
• R(t) - the number of rabbits at time t,
• α - growth rate coefficient of the rabbits,
• β - the death rate coefficient of rabbits due to the fox-rabbit interaction,
• γ - the death rate coefficient of foxes,
• δ - the birth rate coefficient of foxes (the constant of proportionality which measures

the benefit to the fox due to the rabit-fox interaction).

Note that all the parameters in the model are positive. Taking the above assumptions into
account, we arrive at the following model

dR

dt
= αR− βRF

dF

dt
= −γF + δRF.

(1.2.3)

Even though 1.2.3 seems too simplistic to model a realistic situation, equations of this
type are often used in economics, ecology, biology, chemistry, etc. This model was initially
proposed by Alfred Lotka in 1910 as a model of autocatalytic chemical reactions. It was
later independently developed and successfully used by Vito Volterra to explain the increased
number of sharks in the Adriatic Sea following World War I.

Unlike the exponential growth model, 1.2.1, and the logistic model, 1.2.2, for most values
of the parameters the predator-prey system has no analytic solution, i.e. we cannot find
expressions for R(t) and F (t) in terms of explicit formulas. Nonetheless, we can describe
the behavior of the system using qualitative approaches and we can find numerical solutions
to the system. In this course we will employ all there approaches (analytic, qualitative, and
numerical) to gain a better understanding of the differential equations we are studying.


	Chapter 1. Modeling with Ordinary Differential Equations
	1.1. Population Models: Exponential Growth, Logistic Equation, Predator-Prey
	1.2. Population Models: Exponential Growth, Logistic Equation, Predator-Prey
	1.2.1. Exponential Growth
	1.2.2. Logistic Population Model
	1.2.3. Predator-Prey Systems



