Math 421-001

Definition. A metric on a space X is given by a function $d: X \times X \to \mathbb{R}$, which satisfies all of the following conditions:

- 1. $\forall x, y \in X, d(x, y) \ge 0$,
- 2. d(x, y) = 0 if and only if x = y,
- 3. $\forall x, y \in X, d(x, y) = d(y, x),$
- 4. $\forall x, y, z \in X, d(x, z) \leq d(x, y) + d(y, z).$

<u>Problem 1.</u> Show that any norm defines a metric by d(x, y) = ||x - y||.

The **discrete metric** ρ on a space X is defined by

$$\rho(x,y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

<u>Problem 2.</u> Prove that ρ is indeed a metric (i.e. satisfies conditions 1-4 above).

<u>Problem 3.</u> Does any metric define a norm?

Definition. Given a space X with metric d, an **open ball** centered at x of radius ε is the set $B_{\varepsilon}(x) = \{y \in X : d(x, y) < \varepsilon\}.$

Problem 4. Given a space X with the discrete metric ρ , prove the following statements.

- (a) For any $x \in X$, the set $\{x\}$ is an open set.
- (b) All sets in X are open.
- (c) All sets in X are closed.
- (d) Any subset $A \subseteq X$, such that $|A| \ge 2$ is disconnected.

Note: (X, ρ) has the largest possible topology, i.e., all subsets of X are open. This is also referred to as *discrete topology*. On the other hand, *trivial topology* is a topology which only has two open sets: the empty set and the whole space.

Let X be a space. Define a function $s: X \times X \to \mathbb{R}$ by s(x, y) = 0 for all $x, y \in X$.

<u>Problem 5.</u> Is s a metric? Why or why not?

<u>Problem 6.</u> Let X be a space, equipped with the pseudo-metric s.

- (a) Find all the open sets in X.
- (b) Find all the closed sets in X.
- (c) Are there subsets of X which are disconnected? Why?
- (d) Let $A \subset X$ be a nonempty proper subset of X. Find A^0 and \overline{A} .