Problem 1. (15 points) Let $S=\{2,3\}$ and $f:[0,5] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}4, & x \in S \\ 2, & x \in[0,5] \backslash S .\end{cases}
$$

Prove that f is Riemann integrable on $[0,5]$.
Solution: We need to show that for every positive real number ε there exists a partition P of $[0,5]$ such that $U(f, P)-L(f, P)<\varepsilon$. Here $U(f, P)$ and $L(f, P)$ denote respectively the upper and lower Riemann sums of f corresponding to P.

Let $\varepsilon>0$ be given. Let $P=\{0,2-\delta, 2+\delta, 3-\delta, 3+\delta, 5\}$, where $\delta=\min \left\{\frac{\varepsilon}{10}, 1\right\}$. Then $U(f, P)-L(f, P)=(2-2) \triangle x_{1}+(4-2) \triangle x_{2}+(2-2) \triangle x_{3}+(4-2) \triangle x_{4}+(2-2) \triangle x_{5}=8 \delta \leq \frac{4}{5} \varepsilon<\varepsilon$.

Here $\triangle x_{i}$ denotes the length of the $i^{t h}$ interval in the partition P.
Thus, for every $\varepsilon>0$ there exists a partition P of $[0,5]$, such that $U(f, P)-L(f, P)<\varepsilon$, i.e., f is Riemann integrable on $[0,5]$.

