Name \qquad
Definition 1. A function $\|\cdot\|$ from \mathbb{R}^{n} to \mathbb{R} is called a norm, provided the following three conditions are satisfied.
(i) For all $\mathbf{x} \in \mathbb{R}^{n},\|\mathbf{x}\| \geq 0$ with equality only when $\mathbf{x}=\mathbf{0}$.
(ii) For any $\alpha \in \mathbb{R}$ and for any $\mathbf{x} \in \mathbb{R}^{n},\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$.
(iii) (Triangle Inequality.) For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n},\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

Definition 2. Two norms p and q on a vector space V are equivalent if there exist two real constants c and C, with $c>0$ such that for every vector \mathbf{v} in V, the following inequalities hold:

$$
c q(\mathbf{v}) \leq p(\mathbf{v}) \leq C q(\mathbf{v})
$$

Problem 1. Consider the following functions from \mathbb{R}^{n} to \mathbb{R} :
(a) The ℓ^{1}-norm, $\|\cdot\|_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, defined by

$$
\|\mathbf{x}\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right|
$$

(b) The ℓ^{∞}-norm, $\|\cdot\|_{\infty}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, defined by

$$
\|\mathbf{x}\|_{\infty}:=\max _{1 \leq i \leq n}\left\{\left|x_{i}\right|\right\}
$$

Prove that they are both norms on \mathbb{R}^{n} by showing that they satisfy the three conditions in the definition of a norm. You can use the fact that the Triangle Inequality holds on \mathbb{R}, i.e. if $a, b \in \mathbb{R}$, then $|a+b| \leq|a|+|b|$.

Problem 2. Show that $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ satisfy the following inequality on \mathbb{R}^{n} :

$$
\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty},
$$

and conclude that these two norms are equivalent.

