Name _

Definition 1. A function $|| \cdot ||$ from \mathbb{R}^n to \mathbb{R} is called a **norm**, provided the following three conditions are satisfied.

- (i) For all $\mathbf{x} \in \mathbb{R}^n$, $||\mathbf{x}|| \ge 0$ with equality only when $\mathbf{x} = \mathbf{0}$.
- (ii) For any $\alpha \in \mathbb{R}$ and for any $\mathbf{x} \in \mathbb{R}^n$, $||\alpha \mathbf{x}|| = |\alpha|||\mathbf{x}||$.
- (iii) (Triangle Inequality.) For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.

Definition 2. Two norms p and q on a vector space V are **equivalent** if there exist two real constants c and C, with c > 0 such that for every vector \mathbf{v} in V, the following inequalities hold:

$$cq(\mathbf{v}) \le p(\mathbf{v}) \le Cq(\mathbf{v}).$$

Problem 1. Consider the following functions from \mathbb{R}^n to \mathbb{R} :

(a) The ℓ^1 -norm, $|| \cdot ||_1 : \mathbb{R}^n \to \mathbb{R}$, defined by

$$||\mathbf{x}||_1 := \sum_{i=1}^n |x_i|.$$

(b) The ℓ^{∞} -norm, $|| \cdot ||_{\infty} : \mathbb{R}^n \to \mathbb{R}$, defined by

$$||\mathbf{x}||_{\infty} := \max_{1 \le i \le n} \{|x_i|\}.$$

Prove that they are both norms on \mathbb{R}^n by showing that they satisfy the three conditions in the definition of a norm. You can use the fact that the Triangle Inequality holds on \mathbb{R} , i.e. if $a, b \in \mathbb{R}$, then $|a + b| \leq |a| + |b|$.

Problem 2. Show that $|| \cdot ||_{\infty}$ and $|| \cdot ||_1$ satisfy the following inequality on \mathbb{R}^n :

$$||\mathbf{x}||_{\infty} \le ||\mathbf{x}||_1 \le n ||\mathbf{x}||_{\infty},$$

and conclude that these two norms are equivalent.