Name \qquad

Problem 1. Let $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $\mathbf{f}(x, y)=\left(x^{2}+|y|, y^{2}\right)$.
(a) Is \mathbf{f} differentiable at $\mathbf{a}=(0,1)$? If so, find $D \mathbf{f}(0,1)$. Justify your answer by citing the appropriate theorems.
(b) Is \mathbf{f} differentiable at $\mathbf{a}=(0,0)$? If so, find $D \mathbf{f}(0,0)$. Justify your answer by citing the appropriate theorems.

Problem 2. Let $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $\mathbf{f}(x, y)=\left(x^{2}+y|y|, y^{2}\right)$.
Is \mathbf{f} differentiable at $\mathbf{a}=(0,0)$? If so, find $D \mathbf{f}(0,0)$. Justify your answer by citing the appropriate theorems.

Problem 3. Prove that

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \cos \frac{1}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

is differentiable on \mathbb{R}^{2}, but not continuously differentiable at $(0,0)$.
Hint: Consider Example 11.18 in the book.
Problem 3. (11.2.8) Suppose that $\mathbf{T} \in \mathcal{L}\left(\mathbb{R}^{n} \mathbb{R}^{m}\right)$. Prove that \mathbf{T} is differentiable everywhere on \mathbb{R}^{n} with $D \mathbf{T}(\mathbf{a})=\mathbf{T}$ for all $\mathbf{a} \in \mathbb{R}^{n}$.

