Name _____

Problem 1. Let $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{f}(x, y) = (x^2 + |y|, y^2)$.

- (a) Is **f** differentiable at $\mathbf{a} = (0, 1)$? If so, find $D\mathbf{f}(0, 1)$. Justify your answer by citing the appropriate theorems.
- (b) Is **f** differentiable at $\mathbf{a} = (0,0)$? If so, find $D\mathbf{f}(0,0)$. Justify your answer by citing the appropriate theorems.
- **Problem 2.** Let $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{f}(x, y) = (x^2 + y|y|, y^2)$. Is \mathbf{f} differentiable at $\mathbf{a} = (0, 0)$? If so, find $D\mathbf{f}(0, 0)$. Justify your answer by citing the appropriate theorems.

Problem 3. Prove that

$$f(x,y) = \begin{cases} (x^2 + y^2) \cos \frac{1}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

is differentiable on \mathbb{R}^2 , but not continuously differentiable at (0,0). *Hint:* Consider Example 11.18 in the book.

Problem 3. (11.2.8) Suppose that $\mathbf{T} \in \mathcal{L}(\mathbb{R}^n \mathbb{R}^m)$. Prove that \mathbf{T} is differentiable everywhere on \mathbb{R}^n with $D\mathbf{T}(\mathbf{a}) = \mathbf{T}$ for all $\mathbf{a} \in \mathbb{R}^n$.