- I. Be able to state important definitions and theorems.
- II. Review homework problems.
- III. Review quizzes.
- IV. Be able to prove short and straightforward theorems (e.g. problems 1, 2, 6, and 8).

Important definitions you should be able to state

- 1. Upper bound, lower bound, min, max, supremum, infimum for a set in \mathbb{R} .
- 2. What do we mean by $\lim_{n \to \infty} s_n = L$, $\lim_{n \to \infty} s_n = +\infty$, $\lim_{n \to \infty} s_n = -\infty$?
- 3. Increasing, decreasing sequence.
- 4. Definition of limsup and liminf.
- 5. Cauchy sequence.

Important theorems/axioms you should be able to state/prove

- 1. Proving basic properties of real numbers based on given axioms.
- 2. Completeness Axiom (state)
- 3. Proving basic properties of inf and sup. (See problems 4.5-4.9, 4.14, 4.16)
- 4. Proving a given sequence converges using the definition. (See Sect. 8)
- 5. Be able to state and apply the Squeeze Theorem
- 6. Prove: Convergent sequences are bounded. (See Sect. 9)
- 7. Prove: If (s_n) and (t_n) converge, for $a, b \in \mathbb{R}$, prove $\lim_{n \to \infty} (as_n + bt_n) = a \lim_{n \to \infty} s_n + b \lim_{n \to \infty} t_n$. (See Sect. 9)
- 8. Proving a given sequence converges using limit theorems (See Sect. 9)
- 9. Prove: Given $s_n > 0$ for all $n \in \mathbb{N}$, prove $\lim_{n \to \infty} s_n = +\infty$ if and only if $\lim_{n \to \infty} \frac{1}{s_n} = 0$. (See Sect. 9)
- 10. Be able to use: All bounded monotone sequences converge. (See problems 10.9-10.12)
- 11. Be able to prove: If (s_n) is unbounded increasing sequence, then $\lim_{n \to \infty} s_n = +\infty$. (Th. 10.4)
- 12. Prove: If a sequence is convergent, then it is Cauchy. (Sect 10)

In addition, these problems might help you review the material.

- 1. Let A be a nonempty subset of \mathbb{R} that is bounded above, and $B = \{a + 7 : a \in A\}$. Prove that B is also bounded above and $\sup B = 7 + \sup A$.
- 2. Assume S and T are nonempty bounded sets. Prove that if $S \subseteq T$, then $\inf(T) \leq \inf(S)$.

3. Use the definition of convergence to prove $\lim_{n \to \infty} \frac{3n^3 + 7n + 1}{n^3 - n - 3} = 3.$

- 4. Let $a_n = 5 + 3(-1)^n$ for $n \in \mathbb{N}$. Prove (a_n) diverges.
- 5. Let $a_1 = 1$ and $a_{n+1} = \frac{1}{5}(3a_n + 1)$ for $n \ge 1$. Prove $\lim_{n \to \infty} a_n$ exists and find the limit.
- 6. Use the definition to prove that if $\lim_{n \to \infty} a_n = -\infty$ and $\lim_{n \to \infty} b_n = 7$, then $\lim_{n \to \infty} (2a_n + 3b_n) = -\infty$.
- 7. Use the appropriate limit theorems (you do not need to start from the definition) to prove the following sequences converge.

(a)
$$a_n = \sqrt{n^2 + 1} - n, n \in \mathbb{N}.$$

(b) $b_n = \frac{\sin(3n) + 7}{n}, n \in \mathbb{N}.$
(c) $c_n = \frac{n^5 - 10n^2 + 100n - 1}{n^6 - 8n^5 + \pi}, n \in \mathbb{N}.$

8. Prove that if $a_n \leq b_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = +\infty$, then $\lim_{n \to \infty} b_n = +\infty$.