- I. Be able to state important definitions and theorems.
- II. Review homework problems.
- III. Review quizzes and previous exams.
- IV. Be able to prove short and straightforward theorems.

Important definitions you should be able to state

- 1. Upper bound, lower bound, supremum, infimum for a set in \mathbb{R} .
- 2. What do we mean by $\lim_{n \to \infty} s_n = L$, $\lim_{n \to \infty} s_n = +\infty$, $\lim_{n \to \infty} s_n = -\infty$?
- 3. Increasing, decreasing sequence.
- 4. Definition of limsup and liminf.
- 5. Cauchy sequence.
- 6. Continuity of a function (sequential and $\varepsilon \delta$ property)
- 7. Uniform continuity
- 8. Limit of a function as x tends to a along a set S (Def. 20.1)
- 9. Two-sided limit, left hand limit, right hand limit $(\lim_{x \to a} f(x) = L, \lim_{x \to a^+} f(x) = L, \lim_{x \to a^-} f(x) = L)$
- 10. Define each of the following limits in terms of quantified implications ($\varepsilon \delta$ definition, or $M \delta$, etc.): $\lim_{x \to a^-} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = +\infty$, ...
- 11. Radius of convergence, interval of convergence of a power series.
- 12. Uniform convergence of a sequence of functions on a given set
- 13. Derivative of a function
- 14. Increasing/decreasing, strictly increasing/decreasing function

Important theorems/axioms you should be able to state/prove

- 1. Proving basic properties of real numbers based on given axioms.
- 2. Completeness Axiom (state)
- 3. Proving basic properties of inf and sup (see problems 4.5-4.9, 4.14, 4.16)
- 4. Proving a given sequence converges using the definition (see Sect. 8)
- 5. Prove: Convergent sequences are bounded. (see Sect. 9)

- 6. Prove: If (s_n) and (t_n) converge, for $a, b \in \mathbb{R}$, prove $\lim_{n \to \infty} (as_n + bt_n) = a \lim_{n \to \infty} s_n + b \lim_{n \to \infty} t_n$. (see Sect. 9)
- 7. Proving a given sequence converges using limit theorems (see Sect. 9)
- 8. Prove: Given $s_n > 0$ for all $n \in \mathbb{N}$, prove $\lim_{n \to \infty} s_n = +\infty$ if and only if $\lim_{n \to \infty} \frac{1}{s_n} = 0$. (see Sect. 9)
- 9. Be able to use: All bounded monotone sequences converge.
- 10. Prove: If a sequence is convergent, then it is Cauchy. (Sect 10)
- 11. State and apply: Comparison, Ratio, Root, Alternating Series, Integral Tests
- Prove basic properties on how to work with convergent infinite series add, multiply by a scalar, etc. (See Problem 14.5)
- 13. Prove: Th. 17. 2 and 20.6 note the differences and similarities in the proofs.
- 14. Prove: continuity of a function at a given point using the definition and the $\varepsilon \delta$ properties (See Examples 1, 2, 3 in Sect. 17 and related HW.)
- 15. Prove: properties about operations on continuous functions (See Th. 17.4, 17.5)
- 16. State and apply: Extreme Value Theorem (Th. 18.1), Intermediate Value Theorem (Th. 18.2)
- 17. State and apply: Fundamental theorems on uniform continuity (Th. 19.2, Th. 19.4, Th. 19.5)
- 18. Prove: properties of limits of functions (See Th. 20.4, Th. 20.5)
- 19. State and apply: theorem on radius of convergence of a power series (Th. 23.1, Cor. 12.3)
- 20. State and apply: theorem on uniform limit of continuous functions (Th. 24.3)
- 21. State and apply: Weierstrass M-Test (Th. 25.5 and 25.6)
- 22. Prove: basic properties of derivatives (Th. 28.3(i,ii,iii))
- 23. State and apply: Rolle's Theorem, Mean Value Theorem
- 24. Prove: Cor. 29.4, 29.5, 29.7
- 25. State and apply: L'Hospital's Rule

In addition, these problems might help you review the material.

- 1. Let A be a nonempty subset of \mathbb{R} that is bounded below, and $B = \{a + 7 : a \in A\}$. Prove that B is also bounded below and $\inf B = 7 + \inf A$.
- 2. Use the definition of convergence to prove $\lim_{n \to \infty} \frac{3n^3 + 7n + 1}{n^3 n 3} = 3.$
- 3. Let $a_n = 5 + 3(-1)^n$ for $n \in \mathbb{N}$. Prove (a_n) diverges.
- 4. Let $a_1 = 1$ and $a_{n+1} = \frac{1}{5}(3a_n + 1)$ for $n \ge 1$. Prove $\lim_{n \to \infty} a_n$ exists and find the limit.
- 5. Use the definition to prove that if $\lim_{n \to \infty} a_n = -\infty$ and $\lim_{n \to \infty} b_n = 7$, then $\lim_{n \to \infty} (2a_n + 3b_n) = -\infty$
- 6. Determine which of the following series converge. Justify your answer.

(a)
$$\sum_{n=0}^{\infty} \frac{n^3}{5^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n-5}{2n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n-5}{2n^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n+5}{2n^3}$$

(e)
$$\sum_{n=0}^{\infty} \frac{3}{(-2)^n}$$
 - calculate the sum.
(f)
$$\sum_{n=1}^{\infty} \frac{3(-1)^n}{n}$$

(g)
$$\sum_{n=2}^{\infty} \frac{\ln(n)}{n^2}$$

- 7. Prove that the function $\sqrt{4x+1}$ is continuous at $x_0 = 2$ by verifying the $\varepsilon \delta$ property.
- 8. Prove that the function $\sqrt{4x+1}$ is uniformly continuous on $[2,\infty)$ by directly verifying the $\varepsilon \delta$ property.
- 9. Prove that the function $f(x) = ((2x-1)^6 + \sqrt{3x^2 + 16})^5$ is uniformly continuous on (0, 10) using the appropriate theorems.
- 10. Complete the following statements:
 - (a) $\lim_{x \to a^-} f(x) = +\infty$ if and only if for any _____ there exists _____ such that _____ implies _____.
 - (b) $\lim_{x \to a} f(x) = L$ if and only if for any ______ there exists ______ such that ______
 - (c) $\lim_{x \to -\infty} f(x) = L$ if and only if for any ______ there exists ______ such that ______ implies _____.
- 11. Prove, using the above problem.

(a)
$$\lim_{x \to 9^-} \frac{7}{9-x} = +\infty.$$

(b) $\lim_{x \to 10} \frac{7}{9-x} = -7$. (How could we prove this in a simpler way than using the above problem?)

(c)
$$\lim_{x \to \infty} \frac{7x}{9-x} = -7$$

12. For each of the following series find the radius of convergence and determine the exact interval of convergence.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2} x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{5^n}{n!} x^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{7^n}{n5^n} x^n$$

(d)
$$\sum_{n=1}^{\infty} 5^{-n} x^{2n}$$

- 13. For $x \in \mathbb{R}$, let $f_n(x) = \frac{x}{n^2 + 1}$.
 - (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
 - (b) Determine whether $f_n \to f$ uniformly on [-5, 10].
 - (c) Determine whether $f_n \to f$ uniformly on $[5, \infty)$.

14. For
$$x \in [0, \infty)$$
, let $f_n(x) = \frac{1}{x^n + 1}$

- (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
- (b) Determine whether $f_n \to f$ uniformly on [0, 5].

15. Does
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 represent a continuous function on $[-10\,10]$? Explain your reasoning.

- 16. Use the definition of derivative to calculate
 - (a) f'(1) for $f(x) = \sqrt{3x+6}$. (b) g'(0) for $g(x) = x^2 \sin(\frac{1}{x})$ if $x \neq 0$ and g(0) = 0.
- 17. Use the Mean Value Theorem to show $|\sin x \sin y| \le |x y|$ for all $x, y \in \mathbb{R}$.
- 18. Show $ex \leq e^x$ for all $x \in \mathbb{R}$.

19. Find
$$\lim_{x \to 0} (1+5x)^{1/x}$$

20. Find $\lim_{x \to \infty} (e^x + x)^{1/x}$.