I. Be able to state important definitions and theorems.
II. Review homework problems.
III. Review quizzes.
IV. Be able to prove short and straightforward theorems (e.g. problems 1 and 4).

Important definitions you should be able to state

1. Upper bound, lower bound, supremum, infimum for a set in \mathbb{R}.
2. What do we mean by $\lim _{n \rightarrow \infty} s_{n}=L, \lim _{n \rightarrow \infty} s_{n}=+\infty, \lim _{n \rightarrow \infty} s_{n}=-\infty$?
3. Increasing, decreasing sequence.
4. Definition of limsup and liminf.
5. Cauchy sequence.

Important theorems/axioms you should be able to state/prove

1. Proving basic properties of real numbers based on given axioms.
2. Completeness Axiom (state)
3. Proving basic properties of inf and sup (see problems 4.5-4.9, 4.14, 4.16)
4. Proving a given sequence converges using the definition (see Sect. 8)
5. Prove: Convergent sequences are bounded. (see Sect. 9)
6. Prove: If $\left(s_{n}\right)$ and $\left(t_{n}\right)$ converge, for $a, b \in \mathbb{R}$, prove $\lim _{n \rightarrow \infty}\left(a s_{n}+b t_{n}\right)=a \lim _{n \rightarrow \infty} s_{n}+b \lim _{n \rightarrow \infty} t_{n}$. (see Sect. 9)
7. Proving a given sequence converges using limit theorems (see Sect. 9)
8. Prove: Given $s_{n}>0$ for all $n \in \mathbb{N}$, prove $\lim _{n \rightarrow \infty} s_{n}=+\infty$ if and only if $\lim _{n \rightarrow \infty} \frac{1}{s_{n}}=0$. (see Sect. 9)
9. Be able to use: All bounded monotone sequences converge.
10. Prove: If a sequence is convergent, then it is Cauchy. (Sect 10)

In addition, these problems might help you review the material.

1. Let A be a nonempty subset of \mathbb{R} that is bounded below, and $B=\{a+7: a \in A\}$. Prove that B is also bounded below and $\inf B=7+\inf A$.
2. Use the definition of convergence to prove $\lim _{b \rightarrow \infty} \frac{3 n^{3}+7 n+1}{n^{3}-n-3}=3$.
3. Let $a_{n}=5+3(-1)^{n}$ for $n \in \mathbb{N}$. Prove $\left(a_{n}\right)$ diverges.
4. Let $a_{1}=1$ and $a_{n+1}=\frac{1}{5}\left(3 a_{n}+1\right)$ for $n \geq 1$. Prove $\lim _{n \rightarrow \infty} a_{n}$ exists and find the limit.
5. Use the definition to prove that if $\lim _{n \rightarrow \infty} a_{n}=-\infty$ and $\lim _{n \rightarrow \infty} b_{n}=7$, then $\lim _{n \rightarrow \infty}\left(2 a_{n}+3 b_{n}\right)=-\infty$
