I. Review homework problems.
II. Review quizzes.
III. Be able to prove short and straightforward theorems.
IV. Refer to the reviews for Exams I and II, as well as the exams themselves.

Some practice problems to review sections covered in Chapter 6 and Chapter 7

1. Show that the set of all polynomials with a constant coefficient which is divisible by 5 is an ideal in $\mathbb{Z}[x]$. On the other hand, show that the set P of all polynomials with a leading coefficient which is divisible by 5 is NOT an ideal in $\mathbb{Z}[x]$.
Solution: Let $J=\left\{f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]: 5 \mid a_{0}\right\}$. Note that $\mathbb{Z}[x]$ is a commutative ring, so to show J is an ideal, it is sufficient to show that for all $f(x), g(x) \in J$, $f(x)-g(x) \in J$ and for all $h(x) \in \mathbb{Z}[x]$ and all $f(x) \in J, f(x) h(x) \in J$. Let $f(x), g(x) \in J$ be defined by $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ and $g(x)=b_{m} x^{m}+\ldots+b_{1} x+b_{0}$. We have $5 \mid a_{0}$ and $5 \mid b_{0}$. Define $k=\max \{m, n\}, a_{k}=0$ for all $k>n$ and $b_{k}=0$ for all $k>m$. Then $f(x)-g(x)=$ $\left(a_{k}-b_{k}\right) x^{k}+\ldots+\left(a_{1}-b_{1}\right) x+a_{0}-b_{0}$. Since $5 \mid\left(a_{0}-b_{0}\right), f(x)-g(x) \in J$. Now, take an arbitrary $h(x) \in \mathbb{Z}[x]$ and $f(x) \in J$. Assume $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ and $h(x)=c_{m} x^{m}+\ldots+c_{1} x+c_{0}$. Then $h(x) f(x)=f(x) h(x)=a_{n} c_{m} x^{n+m}+\left(a_{n} c_{m-1}+a_{n-1} c_{m}\right) x^{n+m-1}+\ldots+a_{0} c_{0}$. Since $5 \mid a_{0}$, then $5 \mid a_{0} c_{0}$ and so $f(x) h(x) \in J$. Thus, we conclude that J is an ideal.
For the second part, consider $f(x)=5 x^{2}+2 x+3$ and $g(x)=5 x^{2}+x-1$, both of which are elements of P, however, $f(x)-g(x)=x+4$ is not an element of P, thus P is not a ring, and thus not an ideal.
2. Show that the set of non-units is an ideal in \mathbb{Z}_{8}.

Solution: Let M denote the set of nonunits in \mathbb{Z}_{8}, i.e., $M=\{0,2,4,6\}$. Note that for any $m, n \in M, m-n \in M$. Also, it is easy to show that $\forall k \in \mathbb{Z}_{8}$ and $\forall m \in M, m k=k m \in$ M. Thus, M is closed under subtraction and possesses the absorbtion condition, so we can conclude it is an ideal in \mathbb{Z}_{8}.
3. If I and J are ideals in a ring R, show that $I \cap J$ is an ideal in R. Is this the case for $I \cup J$?
4. Give an example of a subring in a given ring, which is not an ideal. Are there ideals which are not subrings?
5. If F is a field, R a nonzero ring, and $f: F \rightarrow R$ a surjective homomorphism, prove that f is an isomorphism.
6. Let $I=\{0,5\}$ in \mathbb{Z}_{10}. Verify that I is an ideal. What are the elements in \mathbb{Z}_{10} / I ? Show that $\mathbb{Z}_{10} / I \cong \mathbb{Z}_{5}$.
7. (a) Prove that the set T of matrices of the form $\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)$ with $a, b \in \mathbb{R}$ is a subring of $M_{2}(\mathbb{R})$.
(b) Prove that the set I of matrices of the form $\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ with $b \in \mathbb{R}$ is an ideal in the ring T.
(c) What are the cosets in T / I ?
(d) Prove that $T / I \cong \mathbb{R}$.
8. Let X be a rigid rhombus in the plane, and $G=\operatorname{Sym}(X)$ its symmetry group (consisting of rotations and reflections).
(a) List the elements of G. Name each by a letter and sketch the symmetry it represents.
(b) Construct the operation table for G. Is G an abelian group?
(c) List all the subgroups H of G.
9. Let G be the set of ordered triples of integers (a, b, c) with the following operation

$$
(a, b, c) *\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}+a b^{\prime}\right)
$$

(a) Show that G is a group under $*$.
(b) Is G abelian?
10. Let $G L(2, \mathbb{R})$ denote the group of units in the ring $M_{2}(\mathbb{R})$ if 2×2 matrices with real coefficients. What is the identity element in the group $M_{2}(\mathbb{R})$? How about in $G L(2, \mathbb{R})$? What is the order of $\left(\begin{array}{rr}0 & 1 \\ -1 & -1\end{array}\right)$ in $G L(2, \mathbb{R})$? What is the order of $\left(\begin{array}{rr}0 & 1 \\ -1 & -1\end{array}\right)$ in $M_{2}(\mathbb{R})$?
11. Prove that if G is a group, its identity element is unique.
12. Let H be a subgroup of a group G. If e_{G} is the identity element of G and e_{H} is the identity element of H, prove that $e_{G}=e_{H}$.
Solution: Note that $h e_{H}=h$ for all elements $h \in H$, so in particular we have $e_{H} e_{H}=e_{H}$. Similarly, $g e_{G}=g$ for all elements $g \in G$, so in particular we have $e_{H} e_{G}=e_{H}$. Thus, $e_{H} e_{H}=e_{H} e_{G}$. Since G is a group, every element has an inverse, thus we have

$$
\begin{aligned}
e_{H}^{-1}\left(e_{H} e_{H}\right) & =e_{H}^{-1}\left(e_{H} e_{G}\right) \\
\left(e_{H}^{-1} e_{H}\right) e_{H} & =\left(e_{H}^{-1} e_{H}\right) e_{G} \\
e_{H} & =e_{G}
\end{aligned}
$$

13. Let a and n be two integers, such that $n>1$ and $\operatorname{gcd}(a, n)=1$. Let \bar{a} denote the congruence class of a modulo n. Prove that \bar{a} generates all of \mathbb{Z}_{n}, i.e. $\langle\bar{a}\rangle=\mathbb{Z}_{n}$.
14. Prove that the additive group $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is not cyclic.

Solution: Recall that
$\mathbb{Z}_{2} \times \mathbb{Z}_{4}=\left\{\left([0]_{2},[0]_{4}\right),\left([0]_{2},[1]_{4}\right),\left([0]_{2},[2]_{4}\right),\left([0]_{2},[3]_{4}\right),\left([1]_{2},[0]_{4}\right),\left([1]_{2},[1]_{4}\right),\left([1]_{2},[2]_{4}\right),\left([1]_{2},[3]_{4}\right)\right\}$
and the order of each element is either 1,2 or 4 . Thus, the cyclic group generated by each element is of order 1,2 , or 4 . Thus, no single element can generate the whole group $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
15. List all cyclic subgroups of (i) S_{3}, (ii) of U_{9}, (iii) of \mathbb{Z}_{9}.

Solution: The cyclic subgroups of S_{3} are as follows.

$$
\begin{gathered}
G_{1}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)\right\rangle \\
G_{2}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)\right\rangle=\left\langle\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\right\rangle \\
G_{3}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\right\rangle \\
G_{4}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\right\rangle \\
G_{5}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\right\rangle
\end{gathered}
$$

The cyclic subgroups of $U_{9}=\{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$ are as follows.

$$
\begin{gathered}
G_{1}=\langle\overline{1}\rangle=\{\overline{1}\} \\
G_{2}=\langle\overline{2}\rangle=\{\overline{1}, \overline{2}, \overline{4}, \overline{8}, \overline{7}, \overline{5}\}=U_{9}=\langle\overline{5}\rangle \\
G_{3}=\langle\overline{4}\rangle=\{\overline{1}, \overline{4}, \overline{7}\}=\langle\overline{7}\rangle \\
G_{4}=\langle\overline{8}\rangle=\{\overline{1}, \overline{8}\}
\end{gathered}
$$

The cyclic subgroups of $\mathbb{Z}_{9}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}\}$ are as follows.

$$
\begin{gathered}
G_{1}=\langle\overline{0}\rangle=\{\overline{0}\} \\
G_{2}=\langle\overline{1}\rangle=\mathbb{Z}_{9}=\langle\overline{2}\rangle=\langle\overline{4}\rangle=\langle\overline{5}\rangle=\langle\overline{7}\rangle=\langle\overline{8}\rangle \\
G_{3}=\langle\overline{3}\rangle=\{\overline{0}, \overline{3}, \overline{6}\}=\langle\overline{6}\rangle
\end{gathered}
$$

16. Challenge: If $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all a, b in G, prove that G is abelian.
