I. Review homework problems.
II. Review quizzes.
III. Be able to prove short and straightforward theorems.
IV. Refer to the reviews for Exams I and II, as well as the exams themselves.

Some practice problems to review sections covered in Chapter 6 and Chapter 7

1. Show that the set of all polynomials with a constant coefficient which is divisible by 5 is an ideal in $\mathbb{Z}[x]$. On the other hand, show that the set of all polynomials with a leading coefficient which is divisible by 5 is NOT an ideal in $\mathbb{Z}[x]$. (Hint: consider $f(x)=5 x^{2}+2 x+1$ and $\left.g(x)=5 x^{2}+x+3\right)$.
2. Show that the set of non-units is an ideal in \mathbb{Z}_{8}.
3. If I and J are ideals in a ring R, show that $I \cap J$ is an ideal in R. Is this the case for $I \cup J$?
4. Give an example of a subring in a given ring, which is not an ideal. Are there ideals which are not subrings?
5. If F is a field, R a nonzero ring, and $f: F \rightarrow R$ a surjective homomorphism, prove that f is an isomorphism.
6. Let $I=\{0,5\}$ in \mathbb{Z}_{10}. Verify that I is an ideal. What are the elements in \mathbb{Z}_{10} / I ? Show that $\mathbb{Z}_{10} / I \cong \mathbb{Z}_{5}$.
7. (a) Prove that the set T of matrices of the form $\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)$ with $a, b \in \mathbb{R}$ is a subring of $M_{2}(\mathbb{R})$.
(b) Prove that the set I of matrices of the form $\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ with $b \in \mathbb{R}$ is an ideal in the ring T.
(c) What are the cosets in T / I ?
(d) Prove that $T / I \cong \mathbb{R}$.
8. Let X be a rigid rhombus in the plane, and $G=\operatorname{Sym}(X)$ its symmetry group (consisting of rotations and reflections).
(a) List the elements of G. Name each by a letter and sketch the symmetry it represents.
(b) Construct the operation table for G. Is G an abelian group?
(c) List all the subgroups H of G.
9. Let G be the set of ordered triples of integers (a, b, c) with the following operation

$$
(a, b, c) *\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}+a b^{\prime}\right)
$$

(a) Show that G is a group under $*$.
(b) Is G abelian?
10. Let $G L(2, \mathbb{R})$ denote the group of units in the ring $M_{2}(\mathbb{R})$ if 2×2 matrices with real coefficients. What is the identity element in the group $M_{2}(\mathbb{R})$? How about in $G L(2, \mathbb{R})$? What is the order of $\left(\begin{array}{rr}0 & 1 \\ -1 & -1\end{array}\right)$ in $G L(2, \mathbb{R})$? What is the order of $\left(\begin{array}{rr}0 & 1 \\ -1 & -1\end{array}\right)$ in $M_{2}(\mathbb{R})$?
11. Prove that if G is a group, its identity element is unique.
12. Let H be a subgroup of a group G. If e_{G} is the identity element of G and e_{H} is the identity element of H, prove that $e_{G}=e_{H}$.
13. Let a and n be two integers, such that $n>1$ and $\operatorname{gcd}(a, n)=1$. Let \bar{a} denote the congruence class of a modulo n. Prove that \bar{a} generates all of \mathbb{Z}_{n}, i.e. $\langle\bar{a}\rangle=\mathbb{Z}_{n}$.
14. Prove that the additive group $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is not cyclic.
15. List all cyclic subgroups of (i) S_{3}, (ii) of U_{9}, (iii) of \mathbb{Z}_{9}.
16. Challenge: If $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all a, b in G, prove that G is abelian.

