- I. Review homework problems.
- II. Review quizzes.
- III. Be able to prove short and straightforward theorems (e.g. see Problems 4 and 8 below).

Some practice problems for review

- 1. Which of the following functions are isomorphisms, which are homomorphisms of rings, and which are neither?
 - (a) $f : \mathbb{Z} \to \mathbb{Z}$, defined by f(n) = 3n. Solution: $f : \mathbb{Z} \to \mathbb{Z}$ is not a homomorphism since $f(1 \cdot 2) = f(2) = 6$, while $f(1) \cdot f(2) = 18$, thus f does not preserve multiplication as there exist elements in \mathbb{Z} such that $f(ab) \neq f(a)f(b)$.
 - (b) f: Z₆ → Z₆, defined by f(n) = 3n.
 Solution: Let f: Z₆ → Z₆ is a homomorphism since for any a, b ∈ Z₆ f(a + b) = 3(a + b) = 3a + 3b = f(a) + f(b). Also, for any a, b ∈ Z₆ f(ab) = 3(ab). On the other hand, f(a)f(b) = (3a)(3b) = 9ab = 3ab. Note that in Z₆, 3 = 9. This homomorphism is not an isomorphism, since f is not injective: f(0) = f(2) = 0.
 - (c) $g: \left\{ \left(\begin{array}{cc} x & 0 \\ 0 & 0 \end{array} \right) : x \in \mathbb{R} \right\} \to \mathbb{R}$, defined by $g\left(\left(\begin{array}{cc} x & 0 \\ 0 & 0 \end{array} \right) \right) = x$.
 - (d) $H: \mathbb{Q}[x] \to \mathbb{Q}[x]$, defined by $H(f(x)) = f^2(x)$.
 - (e) $S: \mathbb{Z}_3[x] \to \mathbb{Z}_3[x]$, defined by $S(f(x)) = f^3(x)$.
 - (f) $D : \mathbb{R}[x] \to \mathbb{R}[x]$ is the derivative map.
- 2. Let $K = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\}$. Show that the function $f : K \to K$, defined by $f(a + b\sqrt{5}) = a b\sqrt{5}$ is an isomorphism of rings.
- 3. If $f : \mathbb{Z} \to \mathbb{Z}$ is an isomorphism, prove that f is the identity map.

Solution: Let $f : \mathbb{Z} \to \mathbb{Z}$ be an isomorphism. Then f(0) = 0 and f(1) = 1. We are going to employ proof by induction. Assume that for some $k \in \mathbb{N}$, f(k) = k. Then f(k+1) = f(k) + f(1) = k + 1, since f preserves addition. Thus, by the Principle of Mathematical Induction, f(n) = n for all nonnegative integers n. It remains to show f(m) = m for all negative integers. Let $m \in \mathbb{Z}$, m < 0. Then $-m \in \mathbb{N}$ and by what we showed above f(m) = f(-(-m)) = -f(-m) = -(-m) = m. Thus, f(n) = n for all integers n, i.e., f is the identity map on \mathbb{Z} .

4. Let $f: A \to B$ be a homomorphism of rings. Define $C = \{f(a) : a \in A\}$. Prove that C is a subring of B.

Solution: It suffices to show that C is closed under subtraction and multiplication. Let $x, y \in C$ be arbitrary. Then there exist $a, b \in A$ such that f(a) = x and f(b) = y. Thus, x - y = f(a) - f(b) = f(a-b), since f is a homomorphism. Thus, x - y is the image of an element in A under f, which shows that $x - y \in C$. Similarly, xy = f(a)f(b) = f(ab), since f is a homomorphism. Thus, $xy \in C$. Thus, we can conclude that C is a subring of B.

- 5. Show that the first ring is not isomorphic to the second.
 - (a) $\mathbb{Z}_3 \times \mathbb{Z}_6$ and \mathbb{Z}_9

Solution: $|\mathbb{Z}_3 \times \mathbb{Z}_6| = 18$, while $|\mathbb{Z}_9|$, since the two sets have different cardinalities, there does not exist a bijection between them.

(b) $\mathbb{Z}_3 \times \mathbb{Z}_6$ and \mathbb{Z}_{18}

Solution: Assume, by way of contradiction, that there exists an isomorphism $f : \mathbb{Z}_3 \times \mathbb{Z}_6 \to \mathbb{Z}_{18}$. Then $f(([0]_3, [0]_6)) = [0]_{18}$ and $f(([1]_3, [1]_6)) = [1]_{18}$ since an isomorphism sends the additive and multiplicative identities of the domain into the additive and multiplicative identities of the range respectively. Also, since f preserves addition, $f(([2]_3, [2]_6)) = [2]_{18}$, $f(([3]_3, [3]_6)) = f(([0]_3, [3]_6)) = f(([0]_3, [3]_6)) = f(([0]_3, [6]_6)) = [6]_{18}$, which is a contradiction since $[0]_{18} \neq [6]_{18}$.

- (c) $\mathbb{Z}_2[x]/(x^2)$ and \mathbb{Z}_4
- (d) \mathbb{Z} and $\{2x : x \in \mathbb{Z}\}$
- 6. Let F be a field, $c \in F \setminus \{0\}$ and $f(x) \in F[x]$. Show that f(x) and f(x) + c are relatively prime.
- 7. Determine if $x^4 + x^2 + 1$ is reducible in \mathbb{Z}_2 . Solution: Yes, it is reducible - note that $(x^2 + x + 1)(x^2 + x + 1) = x^4 + x^3 + x^2 + x^3 + x^2 + x + x^2 + x + 1 = x^4 + 2x^3 + 3x^2 + 2x + 1 = x^4 + x^2 + 1$.
- 8. Let F be a field and $f(x), g(x), p(x) \in F[x]$, with $p(x) \neq 0_F$. It is given that the relation on F[x] defined by $f(x) \equiv g(x) \pmod{p(x)}$ is an equivalence relation, i.e., it satisfies reflexivity, symmetry and transitivity. Let $[f(x)]_p$ denote the equivalence class of f(x).
 - Assume $[f(x)]_p \cap [g(x)]_p \neq \emptyset$.
 - (i) Prove that $f(x) \equiv g(x) \pmod{p(x)}$.
 - (ii) Use the above to show that $[f(x)]_p \subseteq [g(x)]_p$.
- 9. List the elements in $\mathbb{Z}_2[x]/(x^2 + x + 1)$. Is this a field? Why or why not? Solution: $\mathbb{Z}_2[x]/(x^2 + x + 1) = \{[0], [1], [x], [x+1]\}$. The ring $\mathbb{Z}_2[x]/(x^2 + x + 1)$ is a field since $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$.
- 10. List the elements in $\mathbb{Z}_3[x]/(x^2+x)$. Is this a field? Why or why not? Solution: $\mathbb{Z}_3[x]/(x^2+x) = \{[0], [1], [2], [x], [x+1], [x+2], [2x], [2x+1], [2x+2], \}$. The ring $\mathbb{Z}_3[x]/(x^2+x)$ is not a field since it is not an integral domain: [x][x+1] = [0], i.e., there are two nonzero elements whose product is zero.
- 11. Explain why [x + 1] is a unit in $\mathbb{Z}_5[x]/(x^2 + 2)$ and find its inverse.

Solution: Note that $p(x) = x^2 + 2$ is irreducible in \mathbb{Z}_5 , since it is a quadratic polynomial that has no roots in \mathbb{Z}_5 . Indeed p(0) = 2, p(1) = 2, p(2) = 1, p(3) = 1, p(4) = 3. Therefore, $\mathbb{Z}_5[x]/(x^2+2)$ is a field and thus every nonzero element is a unit. Now, in order to find the multiplicative inverse of [x + 1], apply the Division Algorithm to $x^2 + 2$ as dividend and x + 1 as divisor. Note that

$$x^{2} + 2 = (x+1)(x-1) + 3,$$

which in $\mathbb{Z}_5[x]$ is equivalent to

$$2(x^{2}+2) + (x+1)(2-2x) = 1.$$

This implies that in $\mathbb{Z}_5[x]/(x^2+2)$

$$[x+1] \cdot [3x+2] = [1],$$

i.e., $[x+1]^{-1} = [3x+2]$.

12. Show that $\mathbb{Q}[x]/(x^2-5)$ is isomorphic to $K = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\}$. Show that $f(x) = x^2 - 5$ has a root in K.