I. Review homework problems.
II. Review quizzes.
III. Be able to prove short and straightforward theorems (e.g. see Problems 4 and 8 below).

Some practice problems for review

1. Which of the following functions are isomorphisms, which are homomorphisms of rings, and which are neither?
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z}$, defined by $f(n)=3 n$.

Solution: $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is not a homomorphism since $f(1 \cdot 2)=f(2)=6$, while $f(1) \cdot f(2)=18$, thus f does not preserve multiplication as there exist elements in \mathbb{Z} such that $f(a b) \neq f(a) f(b)$.
(b) $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$, defined by $f(n)=3 n$.

Solution: Let $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ is a homomorphism since for any $a, b \in \mathbb{Z}_{6} f(a+b)=3(a+b)=$ $3 a+3 b=f(a)+f(b)$. Also, for any $a, b \in \mathbb{Z}_{6} f(a b)=3(a b)$. On the other hand, $f(a) f(b)=$ $(3 a)(3 b)=9 a b=3 a b$. Note that in $\mathbb{Z}_{6}, 3=9$. This homomorphism is not an isomorphism, since f is not injective: $f(0)=f(2)=0$.
(c) $g:\left\{\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right): x \in \mathbb{R}\right\} \rightarrow \mathbb{R}$, defined by $g\left(\left(\begin{array}{cc}x & 0 \\ 0 & 0\end{array}\right)\right)=x$.
(d) $H: \mathbb{Q}[x] \rightarrow \mathbb{Q}[x]$, defined by $H(f(x))=f^{2}(x)$.
(e) $S: \mathbb{Z}_{3}[x] \rightarrow \mathbb{Z}_{3}[x]$, defined by $S(f(x))=f^{3}(x)$.
(f) $D: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ is the derivative map.
2. Let $K=\{a+b \sqrt{5}: a, b \in \mathbb{Q}\}$. Show that the function $f: K \rightarrow K$, defined by $f(a+b \sqrt{5})=a-b \sqrt{5}$ is an isomorphism of rings.
3. If $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is an isomorphism, prove that f is the identity map.

Solution: Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be an isomorphism. Then $f(0)=0$ and $f(1)=1$. We are going to employ proof by induction. Assume that for some $k \in \mathbb{N}, f(k)=k$. Then $f(k+1)=f(k)+f(1)=k+1$, since f preserves addition. Thus, by the Principle of Mathematical Induction, $f(n)=n$ for all nonnegative integers n. It remains to show $f(m)=m$ for all negative integers. Let $m \in \mathbb{Z}, m<0$. Then $-m \in \mathbb{N}$ and by what we showed above $f(m)=f(-(-m))=-f(-m)=-(-m)=m$. Thus, $f(n)=n$ for all integers n, i.e., f is the identity map on \mathbb{Z}.
4. Let $f: A \rightarrow B$ be a homomorphism of rings. Define $C=\{f(a): a \in A\}$. Prove that C is a subring of B.
Solution: It suffices to show that C is closed under subtraction and multiplication. Let $x, y \in C$ be arbitrary. Then there exist $a, b \in A$ such that $f(a)=x$ and $f(b)=y$. Thus, $x-y=f(a)-f(b)=$ $f(a-b)$, since f is a homomorphism. Thus, $x-y$ is the image of an element in A under f, which shows that $x-y \in C$. Similarly, $x y=f(a) f(b)=f(a b)$, since f is a homomorphism. Thus, $x y$ is the image of an element in A under f, which shows that $x y \in C$. Thus, we can conclude that C is a subring of B.
5. Show that the first ring is not isomorphic to the second.
(a) $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ and \mathbb{Z}_{9}

Solution: $\left|\mathbb{Z}_{3} \times \mathbb{Z}_{6}\right|=18$, while $\left|\mathbb{Z}_{9}\right|$, since the two sets have different cardinalities, there does not exist a bijection between them.
(b) $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ and \mathbb{Z}_{18}

Solution: Assume, by way of contradiction, that there exists an isomorphism $f: \mathbb{Z}_{3} \times \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{18}$. Then $f\left(\left([0]_{3},[0]_{6}\right)\right)=[0]_{18}$ and $f\left(\left([1]_{3},[1]_{6}\right)\right)=[1]_{18}$ since an isomorphism sends the additive and multiplicative identities of the domain into the additive and multiplicative identities of the range respectively. Also, since f preserves addition, $f\left(\left([2]_{3},[2]_{6}\right)\right)=[2]_{18}, f\left(\left([3]_{3},[3]_{6}\right)\right)=$ $f\left(\left([0]_{3},[3]_{6}\right)\right)=[3]_{18}, \ldots, f\left(\left([0]_{3},[0]_{6}\right)\right)=f\left(\left([6]_{3},[6]_{6}\right)\right)=[6]_{18}$, which is a contradiction since $[0]_{18} \neq[6]_{18}$.
(c) $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$ and \mathbb{Z}_{4}
(d) \mathbb{Z} and $\{2 x: x \in \mathbb{Z}\}$
6. Let F be a field, $c \in F \backslash\{0\}$ and $f(x) \in F[x]$. Show that $f(x)$ and $f(x)+c$ are relatively prime.
7. Determine if $x^{4}+x^{2}+1$ is reducible in \mathbb{Z}_{2}.

Solution: Yes, it is reducible - note that $\left(x^{2}+x+1\right)\left(x^{2}+x+1\right)=x^{4}+x^{3}+x^{2}+x^{3}+x^{2}+x+x^{2}+x+1=$ $x^{4}+2 x^{3}+3 x^{2}+2 x+1=x^{4}+x^{2}+1$.
8. Let F be a field and $f(x), g(x), p(x) \in F[x]$, with $p(x) \neq 0_{F}$. It is given that the relation on $F[x]$ defined by $f(x) \equiv g(x)(\bmod p(x))$ is an equivalence relation, i.e., it satisfies reflexivity, symmetry and transitivity. Let $[f(x)]_{p}$ denote the equivalence class of $f(x)$.
Assume $[f(x)]_{p} \cap[g(x)]_{p} \neq \emptyset$.
(i) Prove that $f(x) \equiv g(x)(\bmod p(x))$.
(ii) Use the above to show that $[f(x)]_{p} \subseteq[g(x)]_{p}$.
9. List the elements in $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$. Is this a field? Why or why not?

Solution: $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)=\{[0],[1],[x],[x+1]\}$. The ring $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$ is a field since $x^{2}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$.
10. List the elements in $\mathbb{Z}_{3}[x] /\left(x^{2}+x\right)$. Is this a field? Why or why not?

Solution: $\mathbb{Z}_{3}[x] /\left(x^{2}+x\right)=\{[0],[1],[2],[x],[x+1],[x+2],[2 x],[2 x+1],[2 x+2]$,$\} . The ring \mathbb{Z}_{3}[x] /\left(x^{2}+x\right)$ is not a field since it is not an integral domain: $[x][x+1]=[0]$, i.e., there are two nonzero elements whose product is zero.
11. Explain why $[x+1]$ is a unit in $\mathbb{Z}_{5}[x] /\left(x^{2}+2\right)$ and find its inverse.

Solution: Note that $p(x)=x^{2}+2$ is irreducible in \mathbb{Z}_{5}, since it is a quadratic polynomial that has no roots in \mathbb{Z}_{5}. Indeed $p(0)=2, p(1)=2, p(2)=1, p(3)=1, p(4)=3$. Therefore, $\mathbb{Z}_{5}[x] /\left(x^{2}+2\right)$ is a field and thus every nonzero element is a unit. Now, in order to find the multiplicative inverse of $[x+1]$, apply the Division Algorithm to $x^{2}+2$ as dividend and $x+1$ as divisor. Note that

$$
x^{2}+2=(x+1)(x-1)+3,
$$

which in $\mathbb{Z}_{5}[x]$ is equivalent to

$$
2\left(x^{2}+2\right)+(x+1)(2-2 x)=1
$$

This implies that in $\mathbb{Z}_{5}[x] /\left(x^{2}+2\right)$

$$
[x+1] \cdot[3 x+2]=[1]
$$

i.e., $[x+1]^{-1}=[3 x+2]$.
12. Show that $\mathbb{Q}[x] /\left(x^{2}-5\right)$ is isomorphic to $K=\{a+b \sqrt{5}: a, b \in \mathbb{Q}\}$. Show that $f(x)=x^{2}-5$ has a root in K.

