- I. Review homework problems.
- II. Review quizzes.
- III. Be able to prove short and straightforward theorems (e.g. see Problems 4 and 8 below).

Some practice problems for review

- 1. Which of the following functions are isomorphisms, which are homomorphisms of rings, and which are neither?
 - (a) $f : \mathbb{Z} \to \mathbb{Z}$, defined by f(n) = 3n.
 - (b) $f : \mathbb{Z}_6 \to \mathbb{Z}_6$, defined by f(n) = 3n.
 - (c) $g: \left\{ \left(\begin{array}{cc} x & 0 \\ 0 & 0 \end{array} \right) : x \in \mathbb{R} \right\} \to \mathbb{R}$, defined by $g\left(\left(\begin{array}{cc} x & 0 \\ 0 & 0 \end{array} \right) \right) = x$.
 - (d) $H : \mathbb{Q}[x] \to \mathbb{Q}[x]$, defined by $H(f(x)) = f^2(x)$.
 - (e) $S: \mathbb{Z}_3[x] \to \mathbb{Z}_3[x]$, defined by $S(f(x)) = f^3(x)$.
 - (f) $D: \mathbb{R}[x] \to \mathbb{R}[x]$ is the derivative map.
- 2. Let $K = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\}$. Show that the function $f : K \to K$, defined by $f(a + b\sqrt{5}) = a b\sqrt{5}$ is an isomorphism of rings.
- 3. If $f : \mathbb{Z} \to \mathbb{Z}$ is an isomorphism, prove that f is the identity map.
- 4. Let $f: A \to B$ be a homomorphism of rings. Define $C = \{f(a) : a \in A\}$. Prove that C is a subring of B.
- 5. Show that the first ring is not isomorphic to the second.
 - (a) $\mathbb{Z}_3 \times \mathbb{Z}_6$ and \mathbb{Z}_9
 - (b) $\mathbb{Z}_3 \times \mathbb{Z}_6$ and \mathbb{Z}_{18}
 - (c) $\mathbb{Z}_2[x]/(x^2)$ and \mathbb{Z}_4
 - (d) \mathbb{Z} and $\{2x : x \in \mathbb{Z}\}$
- 6. Let F be a field, $c \in F \setminus \{0\}$ and $f(x) \in F[x]$. Show that f(x) and f(x) + c are relatively prime.
- 7. Determine if $x^4 + x^2 + 1$ is reducible in \mathbb{Z}_2 .
- 8. Let F be a field and f(x), g(x), p(x) ∈ F[x], with p(x) ≠ 0_F. It is given that the relation on F[x] defined by f(x) ≡ g(x) (mod p(x)) is an equivalence relation, i.e., it satisfies reflexivity, symmetry and transitivity. Let [f(x)]_p denote the equivalence class of f(x). Assume [f(x)]_p ∩ [g(x)]_p ≠ Ø.
 - (i) Prove that $f(x) \equiv g(x) \pmod{p(x)}$.
 - (ii) Use the above to show that $[f(x)]_p \subseteq [g(x)]_p$.
- 9. List the elements in $\mathbb{Z}_2[x]/(x^2+x+1)$. Is this a field? Why or why not?
- 10. List the elements in $\mathbb{Z}_3[x]/(x^2+x)$. Is this a field? Why or why not?
- 11. Explain why x + 1 is a unit in $\mathbb{Z}_5[x]/(x^2 + 2)$ and find its inverse.
- 12. Show that $\mathbb{Q}[x]/(x^2-5)$ is isomorphic to $K = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\}$. Show that $f(x) = x^2 5$ has a root in K.