I. Review homework problems.
II. Review quizzes.
III. Be able to prove short and straightforward theorems (e.g. see Problems 4 and 8 below).

Some practice problems for review

1. Which of the following functions are isomorphisms, which are homomorphisms of rings, and which are neither?
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z}$, defined by $f(n)=3 n$.
(b) $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$, defined by $f(n)=3 n$.
(c) $g:\left\{\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right): x \in \mathbb{R}\right\} \rightarrow \mathbb{R}$, defined by $g\left(\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)\right)=x$.
(d) $H: \mathbb{Q}[x] \rightarrow \mathbb{Q}[x]$, defined by $H(f(x))=f^{2}(x)$.
(e) $S: \mathbb{Z}_{3}[x] \rightarrow \mathbb{Z}_{3}[x]$, defined by $S(f(x))=f^{3}(x)$.
(f) $D: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ is the derivative map.
2. Let $K=\{a+b \sqrt{5}: a, b \in \mathbb{Q}\}$. Show that the function $f: K \rightarrow K$, defined by $f(a+b \sqrt{5})=a-b \sqrt{5}$ is an isomorphism of rings.
3. If $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is an isomorphism, prove that f is the identity map.
4. Let $f: A \rightarrow B$ be a homomorphism of rings. Define $C=\{f(a): a \in A\}$. Prove that C is a subring of B.
5. Show that the first ring is not isomorphic to the second.
(a) $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ and \mathbb{Z}_{9}
(b) $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ and \mathbb{Z}_{18}
(c) $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$ and \mathbb{Z}_{4}
(d) \mathbb{Z} and $\{2 x: x \in \mathbb{Z}\}$
6. Let F be a field, $c \in F \backslash\{0\}$ and $f(x) \in F[x]$. Show that $f(x)$ and $f(x)+c$ are relatively prime.
7. Determine if $x^{4}+x^{2}+1$ is reducible in \mathbb{Z}_{2}.
8. Let F be a field and $f(x), g(x), p(x) \in F[x]$, with $p(x) \neq 0_{F}$. It is given that the relation on $F[x]$ defined by $f(x) \equiv g(x)(\bmod p(x))$ is an equivalence relation, i.e., it satisfies reflexivity, symmetry and transitivity. Let $[f(x)]_{p}$ denote the equivalence class of $f(x)$.
Assume $[f(x)]_{p} \cap[g(x)]_{p} \neq \emptyset$.
(i) Prove that $f(x) \equiv g(x)(\bmod p(x))$.
(ii) Use the above to show that $[f(x)]_{p} \subseteq[g(x)]_{p}$.
9. List the elements in $\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$. Is this a field? Why or why not?
10. List the elements in $\mathbb{Z}_{3}[x] /\left(x^{2}+x\right)$. Is this a field? Why or why not?
11. Explain why $x+1$ is a unit in $\mathbb{Z}_{5}[x] /\left(x^{2}+2\right)$ and find its inverse.
12. Show that $\mathbb{Q}[x] /\left(x^{2}-5\right)$ is isomorphic to $K=\{a+b \sqrt{5}: a, b \in \mathbb{Q}\}$. Show that $f(x)=x^{2}-5$ has a root in K.
