Math 310-001

Theorem. (The Division Algorithm) Let a, b be integers with $b \neq 0$. Then there exist unique integers q and r such that a = bq + r and $0 \le r < |b|$.

Theorem. Let a and b b integers, not both 0, and let d be their greatest common divisor. Then there exist, not necessarily unique, integers a and v such that d = au + bv. Furthermore, d is the smallest positive integer that can be written in the form au + bv.

Theorem. Let p be an integer such that $p \neq 0, \pm 1$. Then p is prime if and only if p has the following property: If $p \mid bc$, then $p \mid b$ or $p \mid c$.

Theorem. (The Fundamental Theorem of Arithmetic) Every integer, except $0, \pm 1$ is a product of primes. This prime factorization is unique in the following sense: If $n = p_1 \dots p_k$ and $n = q_1 \dots q_s$ with each p_i, q_j prime and $p_i \leq p_{i+1}, q_j \leq q_{j+1}$, for $i = 1, \dots, k-1, j = 1, \dots, s-1$, then k = s and $p_i = \pm q_i$ for all $i = 1, \dots, k$.

Theorem. Let a, b, n be integers with n > 0. Then the following statements are equivalent

- (a) b = a + kn for some integer k.
- (b) $n \mid b a$.
- (c) $a \equiv b \pmod{n}$.
- (d) [a] = [b] in \mathbb{Z}_n .
- (e) a and b have the same remainder when divided by n.

Definition A ring is a triple $(R, +, \cdot)$ such that

- (i) R is a set;
- (ii) + is a function (called ring addition), $R \times R$ is a subset of the domain of + and for $(a, b) \in R \times R$, a + b denotes the image of (a, b) under +;
- (iii) \cdot is a function (called ring multiplication), $R \times R$ is a subset of the domain of \cdot and for $(a, b) \in R \times R$, $a \cdot b$ (and also ab) denotes the image of (a, b) under \cdot ; and such that the following eight axioms hold:

(A1)	$a+b \in R$ for all $a, b \in R$;	[closure for addition]
(A2)	$a + (b + c) = (a + b) + c$ for all $a, b, c \in R$;	[associative addition]
(A3)	$a+b=b+a$ for all $a,b\in R$.	[commutative addition]
(A4)	there exists an element in R , denoted by 0_R and called 'zero R', such that $a \in R$;	$a + 0_R = a = 0_R + a$ for all [additive identity]
(A5)	for each $a \in R$ there exists an element $x \in R$, such that $a + x = 0_R$;	[additive inverses]
(A6)	$ab \in R$ for all $a, b \in R$;	[closure for multiplication]
(A7)	$a(bc) = (ab)c$ for all $a, b, c \in R$;	[associative multiplication]
(A8)	$a(b+c) = ab + ac$ and $(a+b)c = ac + bc$ for all $a, b, c \in R$.	[distributive laws]

Theorem. Let S be a nonempty subset of a ring R such that

- (1) S is closed under subtraction;
- (1) S is closed under multiplication.

Then S is a subring of R.

- I. Review homework problems.
- II. Review quizzes.
- III. Be able to prove short and straightforward theorems (e.g. see Problem 11 below).

Some practice problems for review

- 1. Let a, b be integers and let k = ab + 1. Prove that gcd(k, a) = gcd(k, b) = 1.
- 2. Let a, b be integers. Prove that gcd(a, b) = gcd(a, b + at) for every $t \in \mathbb{Z}$,
- 3. Prove that $\sqrt{77}$ is irrational.
- 4. If $a \equiv 2 \pmod{4}$, prove that there are no integers c and d such that $a = c^2 d^2$.
- 5. Prove or disprove: If a and b are integers with [a] = [b+2] in \mathbb{Z}_6 , then a-b is not a prime.
- 6. Solve the equation $x^2 + 3x + 2 = 0$ in Z_p , where $p \ge 3$ is a prime.
- 7. Solve the equations in \mathbb{Z}_{12} : (a) 3x = 9(b) 5x = 7(c) 4x = 6.
- 8. Let d be an integer that is not a perfect square. Show that $\mathbb{Q}(\sqrt{d}) = a + b\sqrt{d} \mid a, b \in \mathbb{Q}$ is a subfield of \mathbb{C} .
- 9. Define new addition and new multiplication on \mathbb{Z} by $a \oplus b = a + b 1$ and $a \odot b = ab (a + b) + 2$. Prove that with these new operations \mathbb{Z} is an integral domain.
- 10. The addition and multiplication table for a three element commutative ring with an identity are given below. Use the ring laws to complete the tables.

+				•	a	b	\mathbf{c}
a	с		b	a		b	
a b	a	b	с	b		b	
с			a	с	a	b b	с

Solve the given equation $c + x = a^2$ for x in the given ring.

11. Be able to prove any of the statements in the following

Theorem. For any elements a and b of a ring R,

- (a) $a \cdot 0_R = 0_r = 0_R \cdot a$. (b) a(-b) = -(ab) = (-a)b. (c) -(-a) = a. (d) -(a+b) = (-a) + (-b).
- $(u) \quad (u + v) = (-u) + (-u)$
- (e) (-a)(-b) = ab.

12. Can a ring have more than one zero element? How about more than one identity element?