
Review Problems (with Solutions) for Midterm Exam II
MTH 299 Fall 2014

1. Disprove the statement : There is a real root of equation
1

5
x5 +

2

3
x3 + 2x = 0 on the interval (1, 2).

2. Prove: there exists a real number x such that
x2 + 3x− 3

2x+ 3
= 1.

3. Let f(x) = x3−3x2 +2x−4. Prove that there exists a real number r such that 2 < r < 3 and f(r) = 0.

4. Prove that there is no smallest positive rational number.

5. Prove that there is no largest prime.

Hint: Use proof by contradiction and consider n = p1...pk + 1, where pi, i = 1, ..., k are all the possible
prime numbers, as per your assumption.

6. Let x be an irrational real number. Prove that either x2 or x3 is irrational.

Solution: Assume, by way of contradiction, that x is irrational and x2 and x3 are both rational.

Then, there exist p, q, r, s ∈ Z− {0} such that x2 =
p

q
and x3 =

r

s
. Thus, x =

x3

x2
=
rq

sp
, which implies

that x ∈ Q. This contradicts the assumption. Thus, x2 and x3 cannot both be rational, i.e., either x2

or x3 is irrational.

7. Prove that
√

5 is irrational. (You can use the fact that 5 | x2 if and only if 5 | x.)

Solution: Assume to the contrary that
√

5 ∈ Q. Thus, ∃p, q ∈ Z−{0} such that
√

5 =
p

q
. Assume also

that the fraction is in reduced form, i.e., p and q have no common factors. Thus, p2 = 5q2. Therefore
5 | p2 and consequently f | p. Thus, ∃k ∈ Z such that p = 5k. Substituting this into the above equation
and dividing both sides by 5, one arrives at 5k2 = q2, which implies that 5 | q2 and therefore 5 | q.
This contradicts our assumption that p and q have no common factors. Since the assumption that

√
5

is rational leads to a contradiction, we can conclude that
√

5 is irrational.

8. Prove that if x, y ∈ Z, then x2 − 4y 6= 2.

Solution: Assume, by way of contradiction, that there exist z, y ∈ Z such that x2 − 4y = 2. Then,
x2 = 2(2y + 1), thus x2 is even (since 2y + 1 ∈ Z). Therefore, x must be even, i.e., ∃k ∈ Z such that
x = 2k. Substituting this into the original equation, one arrives at 4(k2 − y) = 2, which implies that
4 | 2. Thus, we have arrived at a contradiction. Therefore, if x, y ∈ Z, then x2 − 4y 6= 2.

9. Use induction to prove that

1 + 3 + 6 + · · ·+ n(n+ 1)

2
=
n(n+ 1)(n+ 2)

6

for all n ∈ N.

Solution: This statement is obviously true for n = 1 since 1(2)(3)
6 = 1. So assume there is some k ≥ 1

for which

1 + 3 + 6 + · · ·+ k(k + 1)

2
=
k(k + 1)(k + 2)

6
.
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Adding (k+1)(k+2)
2 to both sides gives

1 + 3 + 6 + · · ·+ k(k+1)
2 + (k+1)(k+2)

2 = k(k+1)(k+2)
6 + (k+1)(k+2)

2

= k(k+1)(k+2)+3(k+1)(k+2)
6

= (k+1)(k+2)(k+3)
6 ,

which is the desired equality for k + 1. The result then follows by the principle of induction.

10. Prove that

1 +
1√
2

+
1√
3

+ · · ·+ 1√
n
>
√
n+ 1

for all n ∈ N with n ≥ 3. (Note that 1 +
1√
2

+
1√
3
> 1 +

1√
4

+
1√
4

= 2.)

Solution: Since 1 +
1√
2

+
1√
3
> 1 +

1√
4

+
1√
4

= 2 =
√

3 + 1, the inequality holds for n = 3.

Assume that the inequality holds for some k ≥ 3, that is,

1 +
1√
2

+
1√
3

+ · · ·+ 1√
k
>
√
k + 1.

Then we have

1 +
1√
2

+
1√
3

+ · · ·+ 1√
k

+
1√
k + 1

>
√
k + 1 +

1√
k + 1

. (1)

Since
k2 + 4k + 4 > k2 + 3k + 2,

it follows that
(k + 2)2 > (k + 1)(k + 2).

Hence,
(k + 1) + 1 >

√
k + 1

√
k + 2.

Dividing both sides by
√
k + 1 we have

√
k + 1 +

1√
k + 1

≥
√
k + 2.

So by (1) we get that

1 +
1√
2

+
1√
3

+ · · ·+ 1√
k

+
1√
k + 1

>
√
k + 2.

That is, the inequality holds for k + 1.

By the Principle of Mathematical Induction, the inequality holds for every integer n ≥ 3.

11. Use the Strong Principle of Mathematical Induction to prove that for each integer n ≥ 13, there are
nonnegative integers x and y such that n = 3x+ 4y.

Solution: When n = 13, we have 13 = 3(3) + 4(1), which verifies the base case. Proving by strong
induction, we assume that there is some integer k ≥ 13 such that for every integer i ∈ {13, . . . , k} there
are nonnegative integers x, y such that i = 3x + 4y. We will use cases to prove that this implies the
result for k + 1.

Case 1: k = 13. This case follows from the identity k + 1 = 14 = 3(2) + 4(2).
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Case 2: k = 14. This follows from writing k + 1 = 15 = 3(5) + 4(0).

Case 3: k ≥ 15. Then (k+1)−3 = k−2 is an integer between 13 and k, so by the inductive hypothesis
there are nonnegative integers x, y such that (k + 1)− 3 = 3x+ 5y. This gives

k + 1 = 3(x+ 1) + 5y.

Since x+ 1 and y are nonnegative, this proves the result in this case, and finishes the proof.

12. Let R be a relation defined on N2 by (a, b)R(c, d) if ad = bc. Prove or disprove that a relation R is an
equivalence relation and describe the elements in the equivalence class [(1, 2)].

Solution: This is an equivalence relation. Indeed, if (a, b) ∈ N2 we obviously have ab = ba, which
shows (a, b)R(a, b).

To see the relation is symmetric, assume (a, b)R(c, d). Then ad = bc, and this implies cb = da, which
is exactly the statement (c, d)R(a, b).

For transitivity, assume (a, b)R(c, d) and (c, d)R(e, f). Then ad = bc and cf = de. Since none of these
integers are zero, we can divide to get

a

b
=
c

d
,
c

d
=
e

f
.

Hence a
b = e

f and so af = be. This is exactly the statement (a, b)R(e, f).

The equivalence class [(1, 2)] is the set {(x, 2x) | x ∈ N}.

13. For (a, b) and (c, d) ∈ R2, define (a, b) ∼ (c, d) if bac = bcc and bbc = bdc, where bxc is the greatest
integer less than or equal to x. Prove or disprove that a relation ∼ is an equivalence relation in R2.

Solution: This is an equivalence relation. To see it is reflexive, let (a, b) ∈ R2. Then bac = bac and
bbc = bbc, so (a, b) ∼ (a, b).

For symmetry, assume (a, b) ∼ (c, d). Then bac = bcc and bbc = bdc, which implies

bcc = bac, bdc = bbc

and hence (c, d) ∼ (a, b).

To see transitivity, suppose (a, b) ∼ (c, d) and (c, d) ∼ (e, f). Then focusing on the first components,
we have bac = bcc and bcc = bec. This implies bac = bec. The same argument shows bbc = bfc, and
hence (a, b) ∼ (e, f).

14. A relation R is defined on the set of positive rational numbers by aRb if a
b ∈ {3

k : k ∈ Z}. Prove that
a relation R is an equivalence relation and describe the elements in the equivalence class [2].

Solution: This is reflexive because a
a = 1 = 30. To see it is symmetric, assume aRb, and so a

b = 3k for

some k ∈ Z. Then b
a = 3−k and so bRa. For transitivity, assume aRb and bRc, so a

b = 3k and b
c = 3l

for some integers k, l. Then multiplying gives a
c = 3k+l and so aRc.

The equivalence class of 2 is
{

2 · 3k | k ∈ Z
}

.

15. (a) Fill in the following addition and multiplication tables for Z4.
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+ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

× [0] [1] [2] [3]
[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]

(b) For each of the following modular arithmetic equations, use the tables above to either find all
solutions or explain why it has no solution. The coefficients and variables should be taken in Z4.

i. [3]x+ [1] = [2] This has one solution x = [3].

ii. [2]x+ [2] = [3] This has no solutions because [2]x = [3] has no solutions.

iii. [2]x+ [1] = [3] This has two solutions x = [1] and x = [3].

16. Let [a] , [b] ∈ Z5 and [a] 6= [0]. Prove that the equation [a]x+ [b] = 0 always has exactly one solution.

Solution: Let [a] ∈ Z5, and assume this is non-zero. In a moment we will prove there is an integer r
such that

[r] [a] = [1] .

Supposing this is the case, a solution x to [a]x + [b] = 0 is x = [r] [−b]. To prove this solution is the
only one, suppose x′ is a second solution, so [a]x+ [b] = [a]x′ + [b] = [0]. Subtracting these equations
gives

[a] (x− x′) = [0] .

Lemma: If a and b are integers, prove that if 5 | ab then 5 | a and 5 | b.
This implies that 5 divides a or x − x′ = [0]. We have assumed [a] 6= 0, so it must be the case that
x = x′.

Now we prove the existence of [r] above. This can be shown in several ways. For example, one way is
to look at the multiplication table for Z5 and notice that every non-zero [a] has a [1] in its column.

17. Let [a] , [b] ∈ Z5, and assume [a] ∩ [b] 6= ∅. Prove that [a] = [b].

Solution: Let a, b ∈ Z and suppose [a] , [b] ∈ Z5 have non-empty intersection. This means that there
is some r ∈ Z such that r ∈ [a] and r ∈ [b], so we can write r = a+ 5k and r = b+ 5l for some integers
k, l. This gives

a = b+ 5(l − k).

We will show [a] ⊆ [b]; the proof that [b] ⊆ [a] is similar. Let a′ ∈ [a]. Then there is some m ∈ Z such
that a′ = a+ 5m. Combining this with the above gives a′ = b+ 5(m+ l − k), and so a′ ∈ [b].

18. Fill in the blanks in part(a).

(a) Let A and B be sets. A relation R ⊂ A×B defines a function from A to B if

(1) ∀a ∈ A, ∃b ∈ B such that and

(2) ∀a ∈ A, ∀b1, b2 ∈ B, if (a, b1) ∈ R and (a, b2) ∈ R, then

.

Solution:

(a, b) ∈ R and b1 = b2
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(b) Let A be a set. Prove that there exists a unique relation R on A such that R is an equivalence
relation on A and R is a function from A to A.

Solution:

Proof: Let R = {(a, a) | a ∈ A}. Since

(1) for each a ∈ A, there is an a ∈ A such that (a, a) ∈ A and
(2) if (a, b1) ∈ R and (a, b2) ∈ R, then b1 = b2 = a,

the relation R defines a function from A to A. Moreover, R is an equivalence relation since it
is reflexive, symmetric, and transitive since each element is only related to itself. This proves
existence.

To prove uniqueness, suppose that R′ is an equivalence relation on A and that R′ defines a function
from A to A. We prove that R′ = R, where R is the relation above.

Since R′ is an equivalence relation on A, for each a ∈ A we have that (a, a) ∈ R′ by the reflexive
property. Thus, R ⊆ R′.
Suppose that (a, b) ∈ R′. Since R′ is a function and since (a, a) ∈ R′, we have that a = b.
Therefore (a, b) = (a, a) ∈ R. Thus, R′ ⊆ R. And therefore, R = R′. �

19. Let A and B be sets. Suppose that f : A→ B is a function. Let C,D ⊆ B. Prove that

f−1(C ∩D) = f−1(C) ∩ f−1(D).

Solution:

Proof: Suppose that a ∈ f−1(C ∩D). Then f(a) ∈ C ∩D. Therefore, f(a) ∈ C and f(a) ∈ D. And
so, a ∈ f−1(C) and a ∈ f−1(D). Therefore, a ∈ f−1(C) ∩ f−1(D). This proves that f−1(C ∩ D) ⊆
f−1(C) ∩ f−1(D).

Suppose that a ∈ f−1(C) ∩ f−1(D). Then a ∈ f−1(C) and a ∈ f−1(D). Therefore, f(a) ∈ C and
f(a) ∈ D. Therefore, f(a) ∈ C∩D. And therefore, a ∈ f−1(C∩D). This prove that f−1(C)∩f−1(D) ⊆
f−1(C ∩D).

Hence, f−1(C ∩D) = f−1(C) ∩ f−1(D). �

20. Let Z7 = {[0], [1], . . . , [6]} be the set of congruence classes of integers modulo 7 together with the
operations of addition and multiplication of congruence classes. Suppose that f : Z7 → Z7 is the
function defined by the rule

f([x]) = [2x+ 1] for each x ∈ Z.

(a) Prove that f is a bijection.

Solution #1:

We compute the image [x] for each [x] ∈ Z7:

[x] f([x])
[0] [1]
[1] [3]
[2] [5]
[3] [0]
[4] [2]
[5] [4]
[6] [6]

Thus, the range of f is Z7; therefore f is onto. Since no two distinct elements of the domain have
the same image, f is one-to-one. Therefore, f is a bijection.

Solution #2: Let g : Z7 → Z7 be the function defined by g([x]) = [4x + 3]. Then f(g([x]) =
f([4x + 3]) = [2(4x + 3) + 1] = [8x + 7] = [x] since 8 ≡ 1 (mod 7) and 7 ≡ 9 (mod 7). And
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g(f([x])) = g([2x+ 1]) = [4(2x+ 1) + 3] = [8x+ 7] = [x] since 8 ≡ 1 (mod 7) and 7 ≡ 9 (mod 7).
These two calculations prove that f ◦ g = ιZ7

and g ◦ f = ιZ7
. Therefore, g = f−1. (This solves

part (b) below, as well.) Since f has an inverse, f is a bijection.

(b) Prove that there exists integers a and b such that f−1 is given by the rule

f−1([x]) = [ax+ b] for each x ∈ Z.

Solution:

Let a = 4 and b = 3. And define g([x]) = [4x+ 3]. We compute the image of [x] for each [x] ∈ Z7:

[x] g([x])
[0] [3]
[1] [0]
[2] [4]
[3] [1]
[4] [5]
[5] [2]
[6] [6]

Since the table above is the same as the previous table with the columns switched, g = f−1. �
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