Review Problems for Midterm Exam II – MTH 299 Fall 2014

- 1. Disprove the statement: There is a real root of equation $\frac{1}{5}x^5 + \frac{2}{3}x^3 + 2x = 0$ on the interval (1,2).
- 2. *Prove:* there exists a real number x such that $\frac{x^2 + 3x 3}{2x + 3} = 1$.
- 3. Let $f(x) = x^3 3x^2 + 2x 4$. Prove that there exists a real number r such that 2 < r < 3 and f(r) = 0.
- 4. Prove that there is no smallest positive rational number.
- 5. Prove that there is no largest prime. <u>Hint:</u> Use proof by contradiction and consider $n = p_1...p_k + 1$, where $p_i, i = 1, ..., k$ are all the possible prime numbers, as per your assumption.
- 6. Let x be an irrational real number. Prove that either x^2 or x^3 is irrational.
- 7. Prove that $\sqrt{5}$ is irrational. (You can use the fact that $5 \mid x^2$ if and only if $5 \mid x$.)
- 8. Prove that if $x, y \in \mathbb{Z}$, then $x^2 4y \neq 2$.
- 9. Use induction to prove that

$$1+3+6+\dots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6}$$

for all $n \in \mathbb{N}$.

10. Prove that

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n+1}$$
for all $n \in \mathbb{N}$ with $n \ge 3$. (Note that $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} > 1 + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}} = 2$.)

- 11. Use the Strong Principle of Mathematical Induction to prove that for each integer $n \ge 13$, there are nonnegative integers x and y such that n = 3x + 4y.
- 12. Let R be a relation defined on \mathbb{N}^2 by (a, b)R(c, d) if ad = bc. Prove or disprove that a relation R is an equivalence relation and describe the elements in the equivalence class [(1, 2)].
- 13. For (a, b) and $(c, d) \in \mathbb{R}^2$, define $(a, b) \sim (c, d)$ if $\lfloor a \rfloor = \lfloor c \rfloor$ and $\lfloor b \rfloor = \lfloor d \rfloor$, where $\lfloor x \rfloor$ is the greatest integer less than or equal to x. Prove or disprove that a relation \sim is an equivalence relation in \mathbb{R}^2 .
- 14. A relation R is defined on the set of positive rational numbers by aRb if $\frac{a}{b} \in \{3^k : k \in \mathbb{Z}\}$. Prove that a relation R is an equivalence relation and describe the elements in the equivalence class [2].
- 15. (a) Fill in the following addition and multiplication tables for \mathbb{Z}_4 .

+	[0]	[1]	[2]	[3]
[0]				
[1]				
[2]				
[3]				

×	[0]	[1]	[2]	[3]
[0]				
[1]				
[2]				
[3]				

- (b) For each of the following modular arithmetic equations, use the tables above to either find *all* solutions or explain why it has no solution. The coefficients and variables should be taken in \mathbb{Z}_4 .
 - i. [3] x + [1] = [2]
 - ii. [2] x + [2] = [3]
 - iii. [2] x + [1] = [3]
- 16. Let $[a], [b] \in \mathbb{Z}_5$ and $[a] \neq [0]$. Prove that the equation [a]x + [b] = 0 always has exactly one solution.
- 17. Let $[a], [b] \in \mathbb{Z}_5$, and assume $[a] \cap [b] \neq \emptyset$. Prove that [a] = [b].
- 18. Fill in the blanks in part(a).
 - (a) Let A and B be sets. A relation $R \subset A \times B$ defines a function from A to B if
 - (1) $\forall a \in A, \exists b \in B \text{ such that} ____ and$
 - (2) $\forall a \in A, \forall b_1, b_2 \in B$, if $(a, b_1) \in R$ and $(a, b_2) \in R$, then
 - (b) Let A be a set. Prove that there exists a unique relation R on A such that R is an equivalence relation on A and R is a function from A to A.
- 19. Let A and B be sets. Suppose that $f: A \to B$ is a function. Let $C, D \subseteq B$. Prove that

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D).$$

20. Let $\mathbb{Z}_7 = \{[0], [1], \dots, [6]\}$ be the set of congruence classes of integers modulo 7 together with the operations of addition and multiplication of congruence classes. Suppose that $f : \mathbb{Z}_7 \to \mathbb{Z}_7$ is the function defined by the rule

$$f([x]) = [2x+1]$$
 for each $x \in \mathbb{Z}$.

- (a) Prove that f is a bijection.
- (b) Prove that there exists integers a and b such that f^{-1} is given by the rule

$$f^{-1}([x]) = [ax+b]$$
 for each $x \in \mathbb{Z}$.

- 21. For the functions below determine whether (i) they are well defined. If so determine whether (ii) they are injective, (iii) they are surjective.
 - (a) $f: \mathbb{Q} \to \mathbb{Z}$ defined by $f(\frac{a}{b}) = a + b$ for $a, b \in \mathbb{Z}, b \neq 0$.
 - (b) $g : \mathbb{Z}_4 \to \mathbb{Z}_8$ defined by $g([x]_4) = [x]_8$, where $[x]_p$ denotes the congruence class of an integer x modulo p.
 - (c) $h : \mathbb{Z}_8 \to \mathbb{Z}_4$ defined by $h([x]_8) = [x]_4$, where $[x]_p$ denotes the congruence class of an integer x modulo p.
- 22. Show that the sets A and B are numerically equivalent (have the same cardinality) by constructing an explicit bijection between A and B and proving the function you constructed is indeed a bijection.
 - (a) $A = \mathbb{N}, B$ is the set of positive odd integers greater than 100.
 - (b) $A = \mathbb{N}, B = \mathbb{Z} \setminus \{-10, -9, -8, ..., 8, 9, 10\}.$
 - (c) A = [0, 1], B = [10, 15].