2.40 In each of the following, two open sentences P(x, y) and Q(x, y) are given, where the domain of both x and y is \mathbb{Z} . Determine the truth value of $P(x, y) \iff Q(x, y)$ for the given values of x and y.

- (a) $P(x,y): x^2 y^2 = 0$ and Q(x,y): x = y. $(x,y) \in \{(1,-1), (3,4), (5,5)\}.$
- (b) P(x,y): |x| = |y| and Q(x,y): x = y. $(x,y) \in \{(1,2), (2,-2), (6,6)\}.$
- (c) $P(x,y): x^2 + y^2 = 1$ and Q(x,y): x + y = 1. $(x,y) \in \{(1,-1), (-3,4), (0,-1), (1,0)\}.$

2.44 (Bonus) Let $S = \{1, 2, 3, 4\}$. Consider the following open sentences over the domain S:

$$P(n): \frac{n(n-1)}{2}$$
 is even.
 $Q(n): 2^{n-2} - (-2)^{n-2}$ is even.
 $R(n): 5^{n+1} + 2^n$ is prime.

Determine four distinct elements a, b, c, d in S such that all of the following are satisfied.

- (i) $P(a) \Rightarrow Q(a)$ is false;
- (ii) $Q(b) \Rightarrow P(b)$ is true;
- (iii) $P(c) \iff R(c)$ is true;
- (iv) $Q(d) \iff R(d)$ is false.

2.46 For statements P and Q, show that $P \Rightarrow (P \lor Q)$ is a tautology.

2.52 Let P and Q be statements.

- (a) Is ~ $(P \lor Q)$ logically equivalent to $(\sim P) \lor (\sim Q)$? Explain.
- (b) What can you say about the biconditional $\sim (P \lor Q) \iff ((\sim P) \lor (\sim Q))$? **2.54** For statements P and Q, show that $(\sim Q) \implies (P \land (\sim P))$ and Q are logically equivalent.
 - **2.58** Verify the following laws stated in Theorem 2.18:
- (a) Let P, Q, and R be statements. Then

 $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$ are logically equivalent.

(b) Let P and Q be statements. Then

 $\sim (P \lor Q)$ and $(\sim P) \land (\sim Q)$ are logically equivalent.

2.60 Consider the implication: If x and y are even, then xy is even.

- (b) State the converse of the implication.
- (c) State the implication as a disjunction (see Theorem 2.17).
- (d) State the negation of the implication as a conjunction (see Theorem 2.21(a)).