2.40 In each of the following, two open sentences $P(x, y)$ and $Q(x, y)$ are given, where the domain of both x and y is \mathbb{Z}. Determine the truth value of $P(x, y) \Longleftrightarrow Q(x, y)$ for the given values of x and y.
(a) $P(x, y): x^{2}-y^{2}=0$ and $Q(x, y): x=y .(x, y) \in\{(1,-1),(3,4),(5,5)\}$.
(b) $P(x, y):|x|=|y|$ and $Q(x, y): x=y .(x, y) \in\{(1,2),(2,-2),(6,6)\}$.
(c) $P(x, y): x^{2}+y^{2}=1$ and $Q(x, y): x+y=1 .(x, y) \in\{(1,-1),(-3,4),(0,-1),(1,0)\}$.
2.44 (Bonus) Let $S=\{1,2,3,4\}$. Consider the following open sentences over the domain S :

$$
\begin{gathered}
P(n): \frac{n(n-1)}{2} \text { is even. } \\
Q(n): 2^{n-2}-(-2)^{n-2} \text { is even. } \\
R(n): 5^{n+1}+2^{n} \text { is prime. }
\end{gathered}
$$

Determine four distinct elements a, b, c, d in S such that all of the following are satisfied.
(i) $P(a) \Rightarrow Q(a)$ is false;
(ii) $Q(b) \Rightarrow P(b)$ is true;
(iii) $P(c) \Longleftrightarrow R(c)$ is true;
(iv) $Q(d) \Longleftrightarrow R(d)$ is false.
2.46 For statements P and Q, show that $P \Rightarrow(P \vee Q)$ is a tautology.
2.52 Let P and Q be statements.
(a) Is $\sim(P \vee Q)$ logically equivalent to $(\sim P) \vee(\sim Q)$? Explain.
(b) What can you say about the biconditional $\sim(P \vee Q) \Longleftrightarrow((\sim P) \vee(\sim Q))$?
2.54 For statements P and Q, show that $(\sim Q) \Longrightarrow(P \wedge(\sim P))$ and Q are logically equivalent.
2.58 Verify the following laws stated in Theorem 2.18:
(a) Let P, Q, and R be statements. Then

$$
P \vee(Q \wedge R) \text { and }(P \vee Q) \wedge(P \vee R) \text { are logically equivalent. }
$$

(b) Let P and Q be statements. Then

$$
\sim(P \vee Q) \text { and }(\sim P) \wedge(\sim Q) \text { are logically equivalent. }
$$

2.60 Consider the implication: If x and y are even, then $x y$ is even.
(b) State the converse of the implication.
(c) State the implication as a disjunction (see Theorem 2.17).
(d) State the negation of the implication as a conjunction (see Theorem 2.21(a)).

