1. Let $\sum_{n=1}^{\infty} a_{n}$ be a given convergent series and let $c \neq 0$ be a constant. Prove that $\sum_{n=1}^{\infty} c a_{n}$ converges and $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$.
2. Let $\sum_{k=1}^{\infty} a_{k}$ be an infinite series whose sequence of partial sums is $\left\{S_{n}\right\}$, where $S_{n}=$ $\frac{4 n}{3 n+5}$.
(a) Does the series $\sum_{k=1}^{\infty} a_{k}$ converge? If so, what is its sum? Explain your reasoning.
(b) Find an explicit expression for the $k^{t h}$ term, a_{k}, of the series.
