Consider the following definitions.

Definition

- If $\forall M>0, \exists N$ such that $\forall n>N, n \in \mathbb{N}, s_{n}>M$, then the sequence diverges to $+\infty$. We write $\lim _{n \rightarrow \infty} s_{n}=+\infty$.
- If $\forall M<0, \exists N$ such that $\forall n>N, n \in \mathbb{N}, s_{n}<M$, then the sequence diverges to $-\infty$. We write $\lim _{n \rightarrow \infty} s_{n}=-\infty$.

Using the above definitions, prove that

1. $\lim _{n \rightarrow \infty} \frac{n^{2}+4 n-3}{n+5}=+\infty$.
2. $\lim _{n \rightarrow \infty} \frac{n^{5}}{1+2 n-n^{3}}=-\infty$.
