Section 2.1

Problem A (not in the text) Which of the following are statements? Explain.

- 1. Let x be a positive integer. Then \sqrt{x} is rational.
- 2. Mathematics is fun.
- 3. The President of the United States in 1905 was a woman.
- 4. The integer 105 is prime.
- **2.4** Consider the open sentence P(x) : x(x-1) = 6 over the domain \mathbb{R} .
- (a) For what values of x is P(x) a true statement?
- (b) For what values of x is P(x) a false statement?
 - **2.8** Let $P(n): \frac{n^2+5n+6}{2}$ is even
- (a) Find a set S_1 of three integers such that P(n) is an open sentence over the domain S_1 and P(n) is true for each $n \in S_1$.
- (b) Find a set S_2 of three integers such that P(n) is an open sentence over the domain S_2 and P(n) is false for each $n \in S_2$.

Section 2.2

2.14 State the negation of each of the following statements.

- (a) At least two of my library books are overdue.
- (b) One of my two friends misplaced his homework assignment.

Section 2.3

Problem B (not in the text) Consider the following two statements:

$$P:-2\in\mathbb{N},\qquad Q:7>-9.$$

Determine which of the following statements are true.

- (a) $P \lor Q$
- (b) $P \lor (\sim Q)$
- (c) $P \wedge Q$
- (d) $(\sim P) \land Q$
- (e) $(\sim P) \lor (\sim Q)$

Section 2.4

2.20 For statement P and Q, construct a truth table for $(P \implies Q) \implies (\sim P)$.