Section 2.1

Problem A (not in the text) Which of the following are statements? Explain.

1. Let x be a positive integer. Then \sqrt{x} is rational.
2. Mathematics is fun.
3. The President of the United States in 1905 was a woman.
4. The integer 105 is prime.
2.4 Consider the open sentence $P(x): x(x-1)=6$ over the domain \mathbb{R}.
(a) For what values of x is $P(x)$ a true statement?
(b) For what values of x is $P(x)$ a false statement?
2.8 Let $P(n): \frac{n^{2}+5 n+6}{2}$ is even
(a) Find a set S_{1} of three integers such that $P(n)$ is an open sentence over the domain S_{1} and $P(n)$ is true for each $n \in S_{1}$.
(b) Find a set S_{2} of three integers such that $P(n)$ is an open sentence over the domain S_{2} and $P(n)$ is false for each $n \in S_{2}$.

Section 2.2

2.14 State the negation of each of the following statements.
(a) At least two of my library books are overdue.
(b) One of my two friends misplaced his homework assignment.

Section 2.3

Problem B (not in the text) Consider the following two statements:

$$
P:-2 \in \mathbb{N}, \quad Q: 7>-9 .
$$

Determine which of the following statements are true.
(a) $P \vee Q$
(b) $P \vee(\sim Q)$
(c) $P \wedge Q$
(d) $(\sim P) \wedge Q$
(e) $(\sim P) \vee(\sim Q)$

Section 2.4
2.20 For statement P and Q, construct a truth table for $(P \Longrightarrow Q) \Longrightarrow(\sim P)$.

