AXIOM 8.1. For all $x, y, z \in \mathbb{R}$,

(i) x + y = y + x(ii) (x + y) + z = x + (y + z)

(iii) $x \cdot (y+z) = x \cdot y + x \cdot z$

(iv) $x \cdot y = y \cdot x$

(v)
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

AXIOM 8.2. There exists a number 0, such that for all $x \in \mathbb{R}$, x + 0 = x

AXIOM 8.3. There exists a number 1 such that $1 \neq 0$ and whenever $x \in \mathbb{R}$, $x \cdot 1 = x$ AXIOM 8.4. For each $x \in \mathbb{R}$, there exists a real number, denoted by -x, such that x + (-x) = 0

AXIOM 8.5. For each $x \in \mathbb{R} \setminus \{0\}$, there exists a real number, denoted by x^{-1} , such that $x \cdot x^{-1} = 1$

Define subtraction in \mathbb{R} by x - y = x + (-y)

AXIOM 8.26. There exists a subset $\mathbb{R}^{>0}$ of \mathbb{R} satisfying

- (i) If $x, y \in \mathbb{R}^{>0}$ then $x + y \in \mathbb{R}^{>0}$
- (ii) If $x, y \in \mathbb{R}^{>0}$ then $x \cdot y \in \mathbb{R}^{>0}$
- (iii) $0 \notin \mathbb{R}^{>0}$

(iv) For every $x \in \mathbb{R}$, we have $x \in \mathbb{R}^{>0}$ or x = 0 or $-x \in \mathbb{R}^{>0}$

Members of $\mathbb{R}^{>0}$ are called **positive real numbers**. A negative real number is a real number that is neither positive nor zero.

We write x < y if $y - x \in \mathbb{R}^{>0}$, and say x is **less than** y. Similarly we write $x \leq y$ if $y - x \in \mathbb{R}^{>0}$ or x = y, and say x is less than or equal to y.

Let A be a nonempty subset of \mathbb{R} . The set A is **bounded above** if there exists $b \in \mathbb{R}$ such that for all $a \in A$, $a \leq b$. Any such number b is called an **upper bound** for A. If b is an upper bound for A that is less than any other upper bound for A, it is called a **least upper bound** for A and is denoted by sup(A) (sup is an abbreviation for supremum).

Note that so far \mathbb{Q} satisfies all the axioms we have listed. For subsets of \mathbb{Q} , supremum might not exist within rational numbers such as for $A = \{x \in \mathbb{Q} \mid x^2 < 3\}$. To characterize real numbers we require one more axiom to be satisfied:

AXIOM 8.52. (Completeness axiom). Every nonempty subset of \mathbb{R} that is bounded above has a least upper bound.

So far we have notations for only two special real numbers: 0 and 1. Next we define 2 = 1 + 1, 3 = 2 + 1, ..., 9 = 8 + 1, which are called digits. Natural numbers within the set of real numbers is defined by finite sums of the form 1 + 1 + ... + 1, in particular the natural number n corresponds to the sum of n copies of 1.

THEOREM 8.42. $\mathbb{R}^{>0}$ does not have a smallest element.

THEOREM 10.1. The set of natural numbers as a subset of \mathbb{R} is not bounded above in \mathbb{R} .

PROPOSITION 10.4. For each $\epsilon \in \mathbb{R}^{>0}$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$.

PROPOSITION 10.11. Let $x, y \in \mathbb{R}$. Then x = y if and only if for every $\epsilon > 0$ we have $|x - y| \le \epsilon$.

EXERCISE 1. Using these axioms, show that $(x \cdot y)^{-1} = x^{-1} \cdot y^{-1}$.

EXERCISE 2. Using these axioms, show that 1 is a positive real number. (Hint: use proof by contradiction, Axiom 8.26(iv) and Axiom 8.26(ii))