Axiom 8.1. For all $x, y, z \in \mathbb{R}$,
(i) $x+y=y+x$
(ii) $(x+y)+z=x+(y+z)$
(iii) $x \cdot(y+z)=x \cdot y+x \cdot z$
(iv) $x \cdot y=y \cdot x$
(v) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$

Axiom 8.2. There exists a number 0 , such that for all $x \in \mathbb{R}, x+0=x$
Axiom 8.3. There exists a number 1 such that $1 \neq 0$ and whenever $x \in \mathbb{R}, x \cdot 1=x$
Axiom 8.4. For each $x \in \mathbb{R}$, there exists a real number, denoted by $-x$, such that $x+(-x)=0$
Axiom 8.5. For each $x \in \mathbb{R} \backslash\{0\}$, there exists a real number, denoted by x^{-1}, such that $x \cdot x^{-1}=1$
Define subtraction in \mathbb{R} by $x-y=x+(-y)$
Axiom 8.26. There exists a subset $\mathbb{R}^{>0}$ of \mathbb{R} satisfying
(i) If $x, y \in \mathbb{R}^{>0}$ then $x+y \in \mathbb{R}^{>0}$
(ii) If $x, y \in \mathbb{R}^{>0}$ then $x \cdot y \in \mathbb{R}^{>0}$
(iii) $0 \notin \mathbb{R}^{>0}$
(iv) For every $x \in \mathbb{R}$, we have $x \in \mathbb{R}^{>0}$ or $x=0$ or $-x \in \mathbb{R}^{>0}$

Members of $\mathbb{R}^{>0}$ are called positive real numbers. A negative real number is a real number that is neither positive nor zero.

We write $x<y$ if $y-x \in \mathbb{R}^{>0}$, and say x is less than y. Similarly we write $x \leq y$ if $y-x \in \mathbb{R}^{>0}$ or $x=y$, and say x is less than or equal to y.

Let A be a nonempty subset of \mathbb{R}. The set A is bounded above if there exists $b \in \mathbb{R}$ such that for all $a \in A, a \leq b$. Any such number b is called an upper bound for A. If b is an upper bound for A that is less than any other upper bound for A, it is called a least upper bound for A and is denoted by $\sup (A)$ (sup is an abbreviation for supremum).

Note that so far \mathbb{Q} satisfies all the axioms we have listed. For subsets of \mathbb{Q}, supremum might not exist within rational numbers such as for $A=\left\{x \in \mathbb{Q} \mid x^{2}<3\right\}$. To characterize real numbers we require one more axiom to be satisfied:
Axiom 8.52. (Completeness axiom). Every nonempty subset of \mathbb{R} that is bounded above has a least upper bound.

So far we have notations for only two special real numbers: 0 and 1 . Next we define $2=1+1,3=2+1, \ldots, 9=8+1$, which are called digits. Natural numbers within the set of real numbers is defined by finite sums of the form $1+1+\ldots+1$, in particular the natural number n corresponds to the sum of n copies of 1 .
Theorem 8.42. $\mathbb{R}^{>0}$ does not have a smallest element.
THEOREM 10.1. The set of natural numbers as a subset of \mathbb{R} is not bounded above in \mathbb{R}.
Proposition 10.4. For each $\epsilon \in \mathbb{R}^{>0}$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.
Proposition 10.11. Let $x, y \in \mathbb{R}$. Then $x=y$ if and only if for every $\epsilon>0$ we have $|x-y| \leq \epsilon$.
Exercise 1. Using these axioms, show that $(x \cdot y)^{-1}=x^{-1} \cdot y^{-1}$.
Exercise 2. Using these axioms, show that 1 is a positive real number. (Hint: use proof by contradiction, Axiom 8.26(iv) and Axiom 8.26(ii))

