
Math 299 Supplement: Modular Arithmetic Nov 8, 2013

Numbers modulo n. We have previously seen examples of clock arithmetic, an algebraic
system with only finitely many “numbers.” In this lecture, we make a formal analysis.

definition: Fix a positive integer n, the modulus, and let a, b ∈ Z. We say a is equivalent
to b modulo n, in symbols a ≡ b (mod n), to mean that n | (a−b).

example: A standard clock with n = 12 hours has hour marks at 1, 2, . . . , 11, 12 o’clock.
The time 13 hours after noon is 1 o’clock, which corresponds to 13 ≡ 1 (mod 12). Simi-
larly, 11 hours before noon is also 1 o’clock, since −11 ≡ 1 (mod 12); and 0 hours (noon
itself) is 12 o’clock, since 0 ≡ 12 (mod 12). Note that we consider only whole number
hours, never fractions of an hour.

For a fixed modulus n, the relation ≡ has the properties of an equivalence relation on the
set of integers. For any a, b, c ∈ Z, we can show:

• Reflexive: a ≡ a

• Symmetric: If a ≡ b, then b ≡ a.

• Transitive: If a ≡ b and b ≡ c, then a ≡ c

Each element a ∈ Z has its equivalence class a, the set of all elements equivalent to it:

a = {b ∈ Z | b ≡ a}.

Note: Some authors denote the equivalence class as [a].
In the clock example with n = 12, each class consists of all the hours before or after

noon which give the same clock-time:

0 = {. . . ,−12, 0, 12, 24, . . .}
1 = {. . . ,−11, 1, 13, 25, . . .}
2 = {. . . ,−10, 2, 14, 26, . . .}

...
11 = {. . . ,−1, 11, 23, 35, . . .}.

Note that the next class 12 = {. . . ,−12, 0, 12, 24, 36, . . .} is actually the same set as 0:
that is, 12 = 0, since 12 ≡ 0 (mod 12). Similarly, 13 = −11 = 1, etc. These classes have
no common elements, and form a partition of the set Z:

Z = 0 ∪ 1 ∪ 2 ∪ · · · ∪ 11.

lemma: For fixed n, the following conditions are logically equivalent. For any a, a′ ∈ Z:
(i) The numbers are equivalent modulo n: a ≡ a′ (mod n).
(ii) The numbers have the same equivalence class modulo n: a = a′.
(iii) The numbers have the same remainder when divided by n:

a = qn + r and a′ = q′n + r for 0 ≤ r < n.

definition: We write Zn = {0, 1, 2, . . . , n−1}, the set of all equivalence classes modulo n.
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Modular operations. We would like to define addtion and multiplication operations on
the classes in Zn by adding or multiplying the integers in each class. However, there is a
danger of ambiguity: we do not know which element in each class to add or multiply.

For the example of n = 12, we can try to compute in Z12 as follows:

3 + 11 = 14 = 2, 3 · 11 = 33 = 9,

since 3 + 11 = 14 ≡ 2 and 3 · 11 = 33 ≡ 9 (mod 12). Now, we could also take the
alternative forms 3 = 27 and 11 = −1, and do the same computation with these:

27 +−1 = 26 = 2, 27 · −1 = −27 = 9,

since 27 + (−1) = 26 ≡ 2 and 27 · (−1) = −27 ≡ 9 (mod 12). The answers came out the
same, but why? In fact, this will always happen:

proposition: Fix a modulus n. For a, a′, b, b′ ∈ Z, suppose a ≡ a′ and b ≡ b′. Then:

a + b ≡ a′ + b′ and ab ≡ a′b′.

Proof. The hypothesis a ≡ a′ and b ≡ b′ means n | (a−a′) and n | (b−b′). Then:

n | (a−a′) + (b−b′) = (a+a′)− (b+b′),

so by definition a + b ≡ a′ + b′. Also, n divides the integer combination:

(a−a′)b + (b−b′)a′ = ab− a′b + ba′ − b′a′ = ab− a′b′.

That is, n | (ab− a′b′), so by definition ab ≡ a′b′. Q.E.D.

This means that we can unambiguously add and multiply equivalence classes.

definiton: For a, b ∈ Zn, define the sum a + b to be a+b, the class of the integer sum
a+b. Define the product a · b to be ab, the class of the integer product ab.

The proposition guarantees that if a = a′ and b = b′, then a+b is the same class as a′+b′,
and the same for multiplication. The sum or product is specified as a unique class, and
we say the operations are well-defined.

Properties of modular arithmetic. The addtion and multiplication on Zn satisfy
most of the usual group properties familiar from the real numbers. They are easily shown
to be closed, associative, commutative, and distributive. Also 0 is the additive identity,
and −a is the additive inverse of a. Finally, 1 is the multiplicative identity.

The only group axiom which is not clear for Zn is multiplicative inverses: any a ∈ Zn

with a 6= 0 should have some b ∈ Zn with a · b = 1. (We denote such b by a−1.) Note that

we cannot just take b to be 1/a or 1
a , because we do not allow fractional modular numbers

in Zn. Rather, we must find an integer b ∈ Z with a·b = 1, meaning ab ≡ 1 (mod n). This
means n | ab − 1, or ab − 1 = nk for some k ∈ Z. If we rewrite this as a(b) + n(−k) = 1,
we recognize this as a familiar problem: find an integer solution (x, y) = (b,−k) to the
equation:

ax + ny = 1, x, y ∈ Z.
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Using the Euclidean Algorithm, we can find a solution provided gcd(a, n) = 1, but not
otherwise. In other words, b = a−1 exists if and only if a is relatively prime to n.

For the example of Z12, we can find 5
−1

by solving 5x + 12y = 1. The Euclidean
Algorithm gives 5(5)− 2(12) = 1, or 5(5) + 12(−2) = 1, so that (b, k) = (x,−y) = (5, 2).

That is, b = 5, so 5
−1

= b = 5, and indeed: 5 · 5 = 25 = 1. Thus, 5 ∈ Z12 is analogous to
a = −1 ∈ R, which has a2 = 1 and hence a−1 = a.

On the other hand, if we want 3
−1 ∈ Z12, we would have to solve 3x + 12y = 1. This

is impossible since the left side is divisible by gcd(3, 12) = 3, but the right side 1 is not
divisible by 3.

There is one case in which every non-zero element a ∈ Zn has an inverse a−1 = b ∈ Zn:

proposition: If n = p is prime, then the non-zero classes Zpr{0} with the multiplication
operation form a commutative group.
Proof. As noted above, the only non-obvious condition is the existence of inverses. If
a 6= 0, then a 6≡ 0 (mod p), meaning p - a. Since p is prime, this implies gcd(a, p) = 1,
and the Euclidean algorithm gives integers x, y ∈ Z with ax+py = 1. Then ax−1 = −py,
so ax ≡ 1 (mod p), so a · x = 1, and a−1 = x ∈ Zp. Q.E.D.

For example, for the prime modulus n = p = 11, we can check that:

1 = 1 · 1 = 2 · 6 = 3 · 4 = 5 · 9 = 7 · 8 = 10 · 10,

so every non-zero a ∈ Z11 has a multiplicative inverse.

Modular algebra. Since Zp (for p a prime) obeys all the usual axioms of addition and
multiplication, almost everything we know about algebra carries over to Zp, provided we
remember that p = 0.

For example, the quadratic formula gives the solutions to the equation ax2+bx+c = 0:

x =
−b±

√
b2 − 4ac

2a
.

Now, if we want to solve an equation like:

x2 + 2x + 3 = 0 for x ∈ Z11 ,

we apply the quadratic formula to the number system Z11. We need the square root of
b 2 − 4ac = −8 = 3, which by definition is some y ∈ Z11 with y2 = 3. By trial and error
we find 5

2
= 25 = 3, so we take y = ±5. Also, dividing by 2a = 2 means multiplying by

2
−1

= 6. Thus we get:

x = (−b± y)(2a)−1 = (−2± 5)(6) = 18,−42 = 7, 2.

Check: for x = 7, we have: (7)2 + 2(7) + 3 = 66 = 0, and similarly for x = 2.
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Public-key cryptography. The coding methods used in internet security have one basic
requirement: a trap-door function, namely a bijection f : S → S on some finite set S,
such that f is publicly known and efficiently computable, but its inverse function is not
practically computable without knowing a secret number, the so-called private key. That
is, anyone can compute f(a) = b, but given only the function f and output b, no one
can recover the input a with a reasonable amount of computing power, unless they have
access to the private key number.

Public-key cryptography (conceived by Diffie and Hellmann in 1976) is a paradigm for
secret communication over insecure channels. Everyone has a personal trap-door function
f , which they reveal publicly; but they keep their private key d a secret. The sender
puts a message into the form of a number a ∈ S, encodes it as b = f(a) using the
recipient’s public function f , then transmits the encoded message b along an insecure
connection to the recipient, who recovers the message a with her private key d. However,
an eavesdropper who intercepts the encoded message b will be unable to recover a, not
knowing the private key. (The image is that the message a falls through the trap-door f
and becomes b = f(a); then it cannot climb out without the rope d.)

A baby example of a trap-door function is multiplication in Zp for some large prime p.
Fix some value c ∈ Zp, and take f(x) = cx for x ∈ Zp. Given an output b = f(a) = ca, to
recover a we would need to perform the inverse of multiplication by c, i.e. multiplication
by d = c−1. If we did not know the Euclidean Algorithm, it would be difficult to find d,
and thus not practical to recover a = db. We could then take d as the private key, and
have a good trap-door function: no one could undo f(x) unless they knew the secret value
d = c−1.

However, we do know the Euclidean algorithm, so we need a better trap-door function.
The one used by the ubiquitous RSA coding method is not multiplication, but exponenti-
ation in Zn. For appropriate positive integers n and c, we define the function f : Zn → Zn

by f(x) = xc. The inverse function is very difficult to compute, even though everyone
knows n and c. In fact, it is possible to find certain n and pairs (c, d) such that, for any

output b = f(a) = a c, we recover the input as a = b
d
. We then make public the function

f , but keep d as the private key.
Such pairs (c, d) are found by analyzing the multiplicative structure of Zn, where the

modulus is a product of two large primes: n = pq with p, q prime. We say a ∈ Zn is
invertible if there exists an inverse a−1, i.e. if gcd(a, n) = 1. The set of invertible classes
is denoted Z×n , and it forms a multiplicative group. The size of this group, the number
of invertible elements, is (p−1)(q−1). (Try to prove this.) Euler’s Theorem says that, for
any a ∈ Z×n , we have a(p−1)(q−1) = a. Now we take c = p−1 and d = q−1, and define:

f : Z×n → Z×n , f(x) = xc.

We choose our message-numbers to be a ∈ Z×n , and b = f(a) = a c can be reversed by:

b
d

= a cd = a(p−1)(q−1) = a ,

and we recover the message a.
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Problems

1. Prove that the relation ≡ modulo n has the properties stated on p. 1: reflexive,
symmetric, and transitive.

2. The Lemma on p. 1 asserts that the three conditions (i), (ii), (iii) are all logically
equivalent. A complete proof requires several independent parts.

a. Prove (i) ⇒ (ii). That is, if a ≡ a′ (mod n), then the equivalence classes a and a′ are
the same set. Hint: You do not need to consider the definition of a ≡ b or mess with
divisibility: just use the basic properties of ≡ in part (a) to show that b ∈ a ⇐⇒ b ∈ a′.

b. Prove (ii)⇒ (i). That is, if a = a′ are the same set, then a ≡ a′ (mod n). Hint: Again,
this follows immediately from the definiton of a, without worrying about divisibility.

c. Prove (i) ⇒ (iii): that is, if a ≡ a′ (mod n), then a and a′ have the same remainder
when divided by n. Hint: By the Division Lemma, we can always write a = qn + r and
a′ = q′n + r′, and you must show that r = r′.

d. Prove (iii) ⇒ (i): that is, if a and a′ have the same remainder mod n, then a ≡ a′.

3. Consider the modular number system Z9

a. Write the complete 9 × 9 addition and mulitiplication tables. For example, we have
6 + 7 = 13 = 4, so in the addtion table, the entry in the 6 row and 7 column should be 4.
Hint: For simplicity, don’t write the lines over the numbers in the table: just keep in mind
that all the entries are classes in Z9, so that everything is modulo 9.

b. Looking at the multiplication table, determine which elements a ∈ Z9 have inverses
a−1. Explain how this matches the general rule for when a−1 exists at the top of p. 3.

c. Determine which elements have square roots. That is, for which a ∈ Z9 is there some

b ∈ Z9 with b
2

= a?

d. Use the quadratic formula to solve the equation x2 + 3x + 5 = 0 for x ∈ Z9.

4. I have encoded a secret message by the following method. Each letter of my message
is represented by a number using the obvious code A = 1, B = 2, . . . , Z = 26, and also:
comma = 27, period = 28, exclamation point = 29, question mark = 30, space = 31.

Next, I encrypt each number by the function f : Z31 → Z31 with f(x) = 7x. For
example, the letter T is the 20th letter of the alphabet, and f(20) = 7 · 20 = 140 = 16, so
the encrypted number is 16.

The encrypted numbers of my message are:

4, 23, 22, 4, 2, 17.

Break this code and find the original message. That is, for each encrypted number b =
f(a), reverse the function f to find the original a, and look up its letter. Hint: What is
the reverse operation of multiplying by 7 in Z31?
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