Math 299 Supplement: Houston Ch. 3
Aug 28, 2013
We improve the proof of the Law of Cosines for an obtuse triangle on p. 23, following the suggestions in Ch. 3.

THEOREM: Let triangle $\triangle A B C$ have opposite side-lengths a, b, c, and an obtuse angle $\theta>90^{\circ}$ at A. Then:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \theta
$$

Proof: Let $\overline{C L}$ be the altitude perpendicular to line $\overleftrightarrow{A B}$, let h be the length $C L$, and let x be the length $A L$:

We apply Pythagoras' Theorem twice, first to the right triangle $\triangle A C L$:

$$
b^{2}=x^{2}+h^{2}
$$

Applying it to the right triangle $\triangle B C L$, we obtain:

$$
\begin{aligned}
a^{2} & =(c+x)^{2}+h^{2} \\
& =c^{2}+2 c x+x^{2}+h^{2} \\
& =c^{2}+2 c x+b^{2}
\end{aligned}
$$

after substituting the first formula.
By definition, the cosine of the acute external angle $\angle C A L$ is $\cos (180-\theta)=$ x / b, so:

$$
x=b \cos (180-\theta)=-b \cos \theta
$$

Substituting this for x in the earlier equation, we deduce the desired formula:

$$
a^{2}=c^{2}+2 c(-b \cos \theta)+b^{2}=b^{2}+c^{2}-2 b c \cos \theta
$$

