1. (a) Use a multiplication table to find all values $a \in \mathbb{Z}_7$ for which the equation

 $x^2 = a$

has a solution $x \in \mathbb{Z}_7$. For each such a, list all of the solutions x.

(b) Find all solutions $x \in \mathbb{Z}_7$ to the equation $x^2 + \overline{2}x + \overline{6} = \overline{0}$.

2. Consider Z_n .

- (a) Under what conditions on n does every nonzero element have a multiplicative inverse? How about an additive inverse?
- (b) Does every nonzero element have a multiplicative inverse in Z_{21} ?
- (c) Does 5 have a multiplicative inverse in Z_{21} ? Explain why or why not. If it does, find 5^{-1} .
- (d) Solve the equation 5x 14 = 19 in \mathbb{Z}_{21} .
- 3. For each of the following, determine if \sim defines an equivalence relation on the set S. If it does, prove it and describe the equivalence classes. If it does not, explain why.
 - (a) $S = \mathbb{R} \times \mathbb{R}$. For (a, b) and $(c, d) \in S$, define $(a, b) \sim (c, d)$ if 3a + 5b = 3c + 5d.
 - (b) $S = \mathbb{R}$. For $a, b \in S$, $a \sim b$ if a < b.
 - (c) $S = \mathbb{Z}$. For $a, b \in S$, $a \sim b$ if $a \mid b$.
 - (d) $S = \mathbb{R} \times \mathbb{R}$. For (a, b) and $(c, d) \in S$, define $(a, b) \sim (c, d)$ if $\lceil a \rceil = \lceil c \rceil$ and $\lceil b \rceil = \lceil d \rceil$. Here $\lceil x \rceil$ is the smallest integer greater than or equal to x.
- 4. Use quantifiers to express what it means for a sequence $(x_n)_{n\in\mathbb{N}}$ to diverge. You cannot use the terms not or converge.
- 5. Suppose $A, B \subseteq \mathbb{R}$ are bounded and non-empty. Show that $\sup(A \cup B) = \max \{ \sup(A), \sup(B) \}$.
- 6. Suppose $S \subseteq \mathbb{R}$ is bounded and non-empty. Define a new set 3S by $3S = \{3x \mid x \in S\}$. Show that $\sup(3S) = 3\sup(S)$. Similarly, show that $\inf(3S) = 3\inf(S)$.
- 7. If $A \subseteq \mathbb{R}$ is bounded above, by the Completeness Axiom, A has a *least upper bound*. Prove that it is unique.
- 8. Prove that any set $A \subseteq \mathbb{R}$ which is bounded below has a greatest lower bound. Furthermore, prove that it is unique.

9. Use the formal definition of limit to prove the following.

(a)
$$\lim_{n \to \infty} \frac{n^2 + 3}{2n^3 - 4} = 0$$

(b) $\lim_{n \to \infty} \frac{4n - 5}{2n + 7} = 2$
(c) $\lim_{n \to \infty} \frac{n^3 - 3n}{n + 5} = +\infty$
(d) $\lim_{n \to \infty} \frac{n^2 - 7}{1 - n} = -\infty$