Math 299

Exam topics

- 1. Methods of proof
 - (a) Direct proof
 - (b) Proof of the contrapositive
 - (c) Proof by contradiction
 - (d) Proof by cases
 - (e) Proof by induction
 - Might involve proof by working backward
- 2. Divisibility of integers
 - (a) Definition of divisibility
 - (b) Properties of divisibility
 - (c) Division Lemma
 - (d) Definition of prime and composite numbers
 - (e) Definition of greatest common divisor
 - (f) Definition of coprime numbers
 - (g) Definition of **mod**

3. Axioms of Group

You should be able to give a formal definition of

- (a) closure
- (b) associativity
- (c) identity element
- (d) inverse element

You should know and be able to apply the following theorems.

- 1. Fundamental Theorem of Arithmetic
- 2. Every integer greater than or equal to 2 is divisible by at least one prime.
- 3. If n is composite integer, then it has a factor less than or equal to \sqrt{n} .
- 4. The Euclidean Algorithm
- 5. Let g = gcd(a, b). Then $\exists x, y \in \mathbb{Z}$ such that ax + by = g.
- 6. Euclid's Lemma Suppose $n, a, b \in \mathbb{N} \setminus \{0\}$. If $n \mid ab$ and gcd(a, n) = 1, then $n \mid b$.

Practice Problems

- 1. Prove that for any two sets A and B, $(A \cup B)^c = A^c \cap B^c$.
- 2. Prove that if n|a then $n|a+b \Leftrightarrow n|b$
- 3. Use Euclid's lemma to prove that if gcd(m,n) = 1 and m|a and n|a then the product $m \cdot n$ divides a.
- 4. Prove that if a, b are relatively prime, then $\forall c \in \mathbb{Z}, \exists x, y \in \mathbb{Z}$ such that ax+by = c.
- 5. Prove that $gcd(a+3b,b) \leq gcd(a,b+7a)$ for all $a,b \in \mathbb{Z}$ by using the definitions of divisibility and GCD only.
- 6. Use proof by induction to show that $5^{2k} 1$ is divisible by 4 for all $k \in \mathbb{N}$.
- 7. Let $n \in \mathbb{N}$. Use induction to show that exactly one element of the set $\{n, n+1, n+2, n+3\}$ is divisible by 4.
- 8. Let $x \in \mathbb{N} = \{1, 2, 3, ...\}.$
 - (a) Prove that $x^2 + x$ is even.
 - (b) Prove that $(x^2 + x)/2$ is divisible by x if and only if x is odd.
 - (c) Prove that $(x^2 + x)/2$ is divisible by x + 1 if and only if x is even.
- 9. (Houston 26.7 (iii)) Show that if $x^2 3x + 2 < 0$, then 1 < x < 2.
- 10. (Houston 27.23 (v)) Prove that every common divisor of $a, b \in \mathbb{Z}$ is a divisor of gcd(a, b).
- 11. Let $a, b, c \in \mathbb{Z}$. Prove that if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.
- 12. Recall that the Fibonacci numbers are defined by $F_1 = 1, F_2 = 1$, and

$$F_{n+1} = F_{n-1} + F_n, \qquad n \ge 2.$$

(a) Prove that for all $n \in \mathbb{N}$, $\sum_{i=1}^{n} F_i = F_{n+2} - 1$.

(b) Prove that every natural number can be written as the sum of distinct Fibonacci numbers. (This is a harder problem. Hint: use strong induction).

- 13. Let $a, b, c, d \in \mathbb{Z}$ with a and b nonzero. Prove that if $ab \nmid cd$, then $a \nmid c$ or $b \nmid d$.
- 14. Let x be an irrational real number. Prove that either x^2 or x^3 is irrational.

Solutions

1. Prove that for any two sets A and B, $(A \cup B)^c = A^c \cap B^c$.

Proof: We need to prove $(A \cup B)^c \subseteq A^c \cap B^c$ and $A^c \cap B^c \subseteq (A \cup B)^c$. In order to prove $(A \cup B)^c \subseteq A^c \cap B^c$, let x be an arbitrary element in $(A \cup B)^c$. Then $x \notin A \cup B$, i.e., $x \notin A$ and $x \notin B$, which implies $x \in A^c$ and $x \in B^c$. This is equivalent to $x \in A^c \cap B^c$. Thus we proved that every element of $(A \cup B)^c$ is also an element of $A^c \cap B^c$, in other words $(A \cup B)^c \subseteq A^c \cap B^c$ (*).

Now, in order to prove $A^c \cap B^c \subseteq (A \cup B)^c$, let x be an arbitrary element in $A^c \cap B^c$. That is, $x \in A^c$ and $x \in B^c$, which is equivalent to $x \notin A$ and $x \notin B$. This implies that $x \notin A \cup B$, which in its turn is equivalent to $x \in (A \cup B)^c$. Thus we proved that every element of $A^c \cap B^c$ is also an element of $(A \cup B)^c$, in other words $A^c \cap B^c \subseteq (A \cup B)^c$ (**).

Combining (*) and (**) we conclude that $(A \cup B)^c = A^c \cap B^c$.

2. Prove that if n|a then $n|a + b \Leftrightarrow n|b$

Proof: The above statement is biconditional, so we need to prove both directions.

First, we are going to prove "If n|a and n|a+b then n|b". Since n|a, then $\exists k \in \mathbb{Z}$ such that a = kn. Also, since n|a+b, then $\exists m \in \mathbb{Z}$ such that a+b = mn. Combining the two equations, we can express b as b = n(m-k). Note that $(m-k) \in \mathbb{Z}$, and thus n|b.

Next, we need to prove "If n|a and n|b then n|a + b". In a similar way as above, n|a, implies $\exists k \in \mathbb{Z}$ such that a = kn. Also, since n|b, then $\exists s \in \mathbb{Z}$ such that b = sn. Combining the two equations, we can express a + b as a + b = n(k + s). Note that $(k + s) \in \mathbb{Z}$, and thus n|a + b.

3. Use Euclid's lemma to prove that if gcd(m,n) = 1 and m|a and n|a then the product $m \cdot n$ divides a.

Proof: Note that m|a implies $\exists k \in \mathbb{Z}$ such that a = km, similarly n|a implies $\exists s \in \mathbb{Z}$ such that a = sn (*). Thus, km = sn, which means that m|sn. Since, by assumption, gcd(m, n) = 1, by Euclid's lemma we have that m|s, i.e., s = cm for some $c \in \mathbb{Z}$. Substituting this into (*) one arrives at a = cmn, i.e., mn|a.

4. Prove that if a, b are relatively prime, then $\forall c \in \mathbb{Z}, \exists x, y \in \mathbb{Z}$ such that ax + by = c (*).

Proof: Since a, b are relatively prime, gcd(a, b) = 1, which implies that $\exists m, n \in \mathbb{Z}$ such that am + bn = 1. Let c be an arbitrary integer. Multiply the previous equation by c, to arrive at amc + bnc = c. Define x = mc and y = nc and note that $x, y \in \mathbb{Z}$. Also x and y are solutions to (*).

5. Prove that $gcd(a+3b,b) \leq gcd(a,b+7a)$ for all $a,b \in \mathbb{Z}$ by using the definitions of divisibility and GCD only.

Proof: Let g = gcd(a+3b, b). Then g|(a+3b) and g|b, i.e., $\exists k, m \in \mathbb{Z}$ such that a+3b = gk and b = gm. Therefore a = g(k-3m) and b+7a = g(7k-20m).

Since 7k - 20m and k - 3m are integers, this implies that g is a common divisor of a and b + 7a. Therefore it is no larger than the greatest common divisor of these two integers, i.e., $g \leq gcd(a, b + 7a)$.

6. Use proof by induction to show that $5^{2k} - 1$ is divisible by 4 for all $k \in \mathbb{N}$.

Proof: The statement is true for the base case k = 0, as 4|0. Assume that the statement holds true for some integer s, i.e., $4|(5^{2s} - 1)$. We need to prove that the statement holds true for n = s + 1, i.e. $4|(5^{2(s+1)} - 1)|$. Note that $5^{2(s+1)} - 1 = 25 \cdot 5^{2s} - 1$ (*). By the inductive hypothesis, there exists an integer m such that $5^{2s} - 1 = 4m$. Substituting this into (*) one arrives at $5^{2(s+1)} - 1 = 25 \cdot (4m + 1) - 1$, which is equivalent to $5^{2(s+1)} - 1 = 4 \cdot (25m + 6)$, and thus $5^{2(s+1)} - 1$ is divisible by 4. Therefore the statement holds true for any integer k, by induction.

7. Let $n \in \mathbb{N}$. Use induction to show that exactly one element of the set $\{n, n+1, n+2, n+3\}$ is divisible by 4.

Proof: First note that there is *at most* one element which is divisible by 4, since otherwise an element of the set $\{1, 2, 3\}$ would be divisible by 4.

Now we use induction to prove that at least one element of $\{n, n + 1, n + 2, n + 3\}$ is divisible by 4. The base case is obvious. For the inductive step, assume there is some

$$x \in \{k, k+1, k+2, k+3\}$$

that is divisible by 4. We want to show that some element in $\{k + 1, k + 2, k + 3, k + 4\}$ is divisible by 4. If x = k + 1, k + 2 or k + 3, then we are done. If x = k, then k + 4 is divisible by 4, and we are done.

8. Let $x \in \mathbb{N} = \{1, 2, 3, ...\}.$

(a) Prove that $x^2 + x$ is even.

Proof: If x = 2k is even, then $x^2 + x = 4k^2 + 2k = 2k(2k + 1)$ is even. If x = 2k + 1 is odd, then $x^2 + x = 4k^2 + 6k + 2 = 2(2k^2 + 3k + 1)$ is even.

(b) Prove that $(x^2 + x)/2$ is divisible by x if and only if x is odd.

Proof 1: If x = 2k + 1 is odd, then $(x^2 + x)/2 = 2k^2 + 3k + 1 = (2k + 1)(k + 1)$, which is obviously divisible by x = 2k + 1.

For the converse use contradiction. Assume $(x^2 + x)/2$ is divisible by x, and x = 2k is even. Then $(x^2 + x)/2 = k(2k + 1)$. Since this is divisible by x = 2k, we must have that k(2k + 1)/2k = (2k + 1)/2 is an integer. This is impossible since the numerator 2k + 1 is odd.

Proof 2: Write $(x^2 + x)/2 = x(x + 1)/2$. First suppose x is odd. We want to show that x(x + 1)/(2x) = (x + 1)/2 is an integer. This is immediate since the numerator x + 1 is even.

Conversely, suppose x divides $(x^2+x)/2$. This implies that (x+1)/2 is an integer, and hence x + 1 is even. It follows that x is odd.

(c) Prove that $(x^2 + x)/2$ is divisible by x + 1 if and only if x is even.

Proof: This is similar to Part (b).

9. (Houston 26.7 (iii)) Show that if $x^2 - 3x + 2 < 0$, then 1 < x < 2.

Proof: Write $x^2 - 3x + 2 = (x - 1)(x - 2)$. If this is negative, then we are in one of two cases:

Case 1: x - 1 > 0 and x - 2 < 0, or

Case 2: x - 1 < 0 and x - 2 > 0.

The first case is equivalent to x > 1 and x < 2, which is impossible. The second case is equivalent to 1 < x < 2, as desired.

10. (Houston 27.23 (v)) Prove that every common divisor of $a, b \in \mathbb{Z}$ is a divisor of gcd(a, b).

Proof: Suppose c divides a and b. By Theorem 28.7 we can write

$$ma + nb = \gcd(a, b)$$

for some integers $m, n \in \mathbb{Z}$. Since c divides a and b, it also divides ma + nb, by Theorem 27.5. It follows that c divides gcd(a, b).

11. Let $a, b, c \in \mathbb{Z}$. Prove that if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

Proof 1: Direct proof from previous results. Assume gcd(a, b) = gcd(a, c) = 1. By the Euclidean Algorithm, we can write ma + nb = 1 and qa + rc = 1, so that:

$$\begin{aligned} (1)(1) &= (ma+nb)(qa+rc) \\ &= (ma)(qa) + (nb)(qa) + (ma)(rc) + (nb)(rc) \\ &= (maq+nbq+mrc)a + (nr)(bc). \end{aligned}$$

That is, $ka + \ell(bc) = 1$ for $k, \ell \in \mathbb{Z}$, so Proposition 1(a) above gives gcd(a, bc) = 1. **Proof 2:** Contrapositive. Assume the contrapositive hypothesis: d = gcd(a, bc) > 1. Then d has a prime factor p|d, with p|a and p|bc. By the Prime Lemma, this means p|b, so that $gcd(a, b) \ge p > 1$; or p|c, so that $gcd(a, c) \ge p > 1$. In either case, gcd(a, b) > 1 or gcd(a, c) > 1, which is the contrapositive conclusion.

12. Recall that the Fibonacci numbers are defined by $F_1 = 1, F_2 = 1$, and

$$F_{n+1} = F_{n-1} + F_n, \qquad n \ge 2.$$

Prove that for all $n \in \mathbb{N}$, $\sum_{i=1}^{n} F_i = F_{n+2} - 1$.

Proof: Induction. Let A(n) be the formula for a given $n \ge 1$. Base: $F_1 = 1 = 2 - 1 = F_3 - 1$, so A(1) is true.

Chain. Assume A(n): $F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$ for some $n \ge 1$. Then:

 $F_1 + F_2 + \dots + F_n + F_{n+1} = (F_{n+2} - 1) + F_{n+1}$ by inductive hypothesis = $F_{n+2} + F_{n+1} - 1 = F_{n+3} - 1$ by recurrence for F_{n+3}

which gives the inductive conclusion A(n+1).

13. Let $a, b, c, d \in \mathbb{Z}$ with a and b nonzero. Prove that if $ab \nmid cd$, then $a \nmid c$ or $b \nmid d$.

Proof. Contrapositive. Assume the contrapositive hypothesis a|c and b|d. Then c = na and d = mb, so that cd = nmab. This gives the contrapositive conclusion ab | cd.

14. Let x be an irrational real number. Prove that either x^2 or x^3 is irrational.

Proof. Contrapositive. Assume the contrapositive hypothesis x^2 and x^3 are rational, and $x \neq 0$. (The case x = 0 is obvious.) The the quotient of two rational numbers is rational, so $x = x^2/x^3$ is rational, which is the contrapositive hypothesis.