
Math 299 Midterm 2 Review Nov 1, 2013

Exam topics

1. Methods of proof

(a) Direct proof

(b) Proof of the contrapositive

(c) Proof by contradiction

(d) Proof by cases

(e) Proof by induction

• Might involve proof by working backward

2. Divisibility of integers

(a) Definition of divisibility

(b) Properties of divisibility

(c) Division Lemma

(d) Definition of prime and composite numbers

(e) Definition of greatest common divisor

(f) Definition of coprime numbers

(g) Definition of mod

3. Axioms of Group
You should be able to give a formal definition of

(a) closure

(b) associativity

(c) identity element

(d) inverse element

You should know and be able to apply the following theorems.

1. Fundamental Theorem of Arithmetic

2. Every integer greater than or equal to 2 is divisible by at least one prime.

3. If n is composite integer, then it has a factor less than or equal to
√
n.

4. The Euclidean Algorithm

5. Let g = gcd(a, b). Then ∃x, y ∈ Z such that ax + by = g.

6. Euclid’s Lemma Suppose n, a, b ∈ N \ {0}. If n | ab and gcd(a, n) = 1, then
n | b.



Practice Problems

1. Prove that for any two sets A and B, (A ∪B)c = Ac ∩Bc.

2. Prove that if n|a then n|a + b⇔ n|b

3. Use Euclid’s lemma to prove that if gcd(m,n) = 1 and m|a and n|a then the
product m · n divides a.

4. Prove that if a, b are relatively prime, then ∀c ∈ Z, ∃x, y ∈ Z such that ax+by = c.

5. Prove that gcd(a + 3b, b) ≤ gcd(a, b + 7a) for all a, b ∈ Z by using the definitions
of divisibility and GCD only.

6. Use proof by induction to show that 52k − 1 is divisible by 4 for all k ∈ N.

7. Let n ∈ N. Use induction to show that exactly one element of the set {n, n + 1, n + 2, n + 3}
is divisible by 4.

8. Let x ∈ N = {1, 2, 3, ...}.
(a) Prove that x2 + x is even.

(b) Prove that (x2 + x)/2 is divisible by x if and only if x is odd.

(c) Prove that (x2 + x)/2 is divisible by x + 1 if and only if x is even.

9. (Houston 26.7 (iii)) Show that if x2 − 3x + 2 < 0, then 1 < x < 2.

10. (Houston 27.23 (v)) Prove that every common divisor of a, b ∈ Z is a divisor of
gcd(a, b).

11. Let a, b, c ∈ Z. Prove that if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

12. Recall that the Fibonacci numbers are defined by F1 = 1, F2 = 1, and

Fn+1 = Fn−1 + Fn, n ≥ 2.

(a) Prove that for all n ∈ N,
∑n

i=1 Fi = Fn+2 − 1.

(b) Prove that every natural number can be written as the sum of distinct Fi-
bonacci numbers. (This is a harder problem. Hint: use strong induction).

13. Let a, b, c, d ∈ Z with a and b nonzero. Prove that if ab - cd, then a - c or b - d.

14. Let x be an irrational real number. Prove that either x2 or x3 is irrational.



Solutions

1. Prove that for any two sets A and B, (A ∪B)c = Ac ∩Bc.

Proof: We need to prove (A ∪B)c ⊆ Ac ∩Bc and Ac ∩Bc ⊆ (A ∪B)c. In order
to prove (A ∪ B)c ⊆ Ac ∩ Bc, let x be an arbitrary element in (A ∪ B)c. Then
x /∈ A ∪ B, i.e., x /∈ A and x /∈ B, which implies x ∈ Ac and x ∈ Bc. This is
equivalent to x ∈ Ac∩Bc. Thus we proved that every element of (A∪B)c is also
an element of Ac ∩Bc , in other words (A ∪B)c ⊆ Ac ∩Bc (*).

Now, in order to prove Ac ∩ Bc ⊆ (A ∪ B)c, let x be an arbitrary element in
Ac ∩ Bc. That is, x ∈ Ac and x ∈ Bc, which is equivalent to x /∈ A and x /∈ B.
This implies that x /∈ A ∪ B, which in its turn is equivalent to x ∈ (A ∪ B)c.
Thus we proved that every element of Ac ∩Bc is also an element of (A∪B)c , in
other words Ac ∩Bc ⊆ (A ∪B)c (**).

Combining (*) and (**) we conclude that (A ∪B)c = Ac ∩Bc.

2. Prove that if n|a then n|a + b⇔ n|b
Proof: The above statement is biconditional, so we need to prove both directions.

First, we are going to prove “If n|a and n|a+ b then n|b”. Since n|a, then ∃k ∈ Z
such that a = kn. Also, since n|a + b, then ∃m ∈ Z such that a + b = mn.
Combining the two equations, we can express b as b = n(m − k). Note that
(m− k) ∈ Z, and thus n|b.
Next, we need to prove “If n|a and n|b then n|a + b”. In a similar way as above,
n|a, implies ∃k ∈ Z such that a = kn. Also, since n|b, then ∃s ∈ Z such that
b = sn. Combining the two equations, we can express a + b as a + b = n(k + s).
Note that (k + s) ∈ Z, and thus n|a + b.

3. Use Euclid’s lemma to prove that if gcd(m,n) = 1 and m|a and n|a then the
product m · n divides a.

Proof: Note that m|a implies ∃k ∈ Z such that a = km, similarly n|a implies
∃s ∈ Z such that a = sn (*). Thus, km = sn, which means that m|sn. Since,
by assumption, gcd(m,n) = 1, by Euclid’s lemma we have that m|s, i.e., s = cm
for some c ∈ Z. Substituting this into (*) one arrives at a = cmn, i.e., mn|a.

4. Prove that if a, b are relatively prime, then ∀c ∈ Z, ∃x, y ∈ Z such that ax+by = c
(*).

Proof: Since a, b are relatively prime, gcd(a, b) = 1, which implies that ∃m,n ∈ Z
such that am + bn = 1. Let c be an arbitrary integer. Multiply the previous
equation by c, to arrive at amc + bnc = c. Define x = mc and y = nc and note
that x, y ∈ Z. Also x and y are solutions to (*).

5. Prove that gcd(a + 3b, b) ≤ gcd(a, b + 7a) for all a, b ∈ Z by using the definitions
of divisibility and GCD only.

Proof: Let g = gcd(a+ 3b, b). Then g|(a+ 3b) and g|b, i.e., ∃k,m ∈ Z such that
a + 3b = gk and b = gm. Therefore a = g(k − 3m) and b + 7a = g(7k − 20m).



Since 7k− 20m and k− 3m are integers, this implies that g is a common divisor
of a and b + 7a. Therefore it is no larger than the greatest common divisor of
these two integers, i.e., g ≤ gcd(a, b + 7a).

6. Use proof by induction to show that 52k − 1 is divisible by 4 for all k ∈ N.

Proof: The statement is true for the base case k = 0, as 4|0. Assume that
the statement holds true for some integer s, i.e., 4|(52s − 1). We need to prove
that the statement holds true for n = s + 1, i.e. 4|(52(s+1) − 1). Note that
52(s+1) − 1 = 25 · 52s − 1 (*). By the inductive hypothesis, there exists an
integer m such that 52s − 1 = 4m. Substituting this into (*) one arrives at
52(s+1) − 1 = 25 · (4m+ 1)− 1, which is equivalent to 52(s+1) − 1 = 4 · (25m+ 6),
and thus 52(s+1)− 1 is divisible by 4. Therefore the statement holds true for any
integer k, by induction.

7. Let n ∈ N. Use induction to show that exactly one element of the set {n, n + 1, n + 2, n + 3}
is divisible by 4.

Proof: First note that there is at most one element which is divisible by 4, since
otherwise an element of the set {1, 2, 3} would be divisible by 4.

Now we use induction to prove that at least one element of {n, n + 1, n + 2, n + 3}
is divisible by 4. The base case is obvious. For the inductive step, assume there
is some

x ∈ {k, k + 1, k + 2, k + 3}
that is divisible by 4. We want to show that some element in {k + 1, k + 2, k + 3, k + 4}
is divisible by 4. If x = k + 1, k + 2 or k + 3, then we are done. If x = k, then
k + 4 is divisible by 4, and we are done.

8. Let x ∈ N = {1, 2, 3, ...}.
(a) Prove that x2 + x is even.

Proof: If x = 2k is even, then x2 + x = 4k2 + 2k = 2k(2k + 1) is even. If
x = 2k + 1 is odd, then x2 + x = 4k2 + 6k + 2 = 2(2k2 + 3k + 1) is even.

(b) Prove that (x2 + x)/2 is divisible by x if and only if x is odd.

Proof 1: If x = 2k + 1 is odd, then (x2 + x)/2 = 2k2 + 3k + 1 = (2k + 1)(k + 1),
which is obviously divisible by x = 2k + 1.

For the converse use contradiction. Assume (x2 + x)/2 is divisible by x, and
x = 2k is even. Then (x2 + x)/2 = k(2k + 1). Since this is divisible by x = 2k,
we must have that k(2k + 1)/2k = (2k + 1)/2 is an integer. This is impossible
since the numerator 2k + 1 is odd.

Proof 2: Write (x2 + x)/2 = x(x + 1)/2. First suppose x is odd. We want to
show that x(x + 1)/(2x) = (x + 1)/2 is an integer. This is immediate since the
numerator x + 1 is even.



Conversely, suppose x divides (x2+x)/2. This implies that (x+1)/2 is an integer,
and hence x + 1 is even. It follows that x is odd.

(c) Prove that (x2 + x)/2 is divisible by x + 1 if and only if x is even.

Proof: This is similar to Part (b).

9. (Houston 26.7 (iii)) Show that if x2 − 3x + 2 < 0, then 1 < x < 2.

Proof: Write x2− 3x+ 2 = (x− 1)(x− 2). If this is negative, then we are in one
of two cases:

Case 1: x− 1 > 0 and x− 2 < 0, or

Case 2: x− 1 < 0 and x− 2 > 0.

The first case is equivalent to x > 1 and x < 2, which is impossible. The second
case is equivalent to 1 < x < 2, as desired.

10. (Houston 27.23 (v)) Prove that every common divisor of a, b ∈ Z is a divisor of
gcd(a, b).

Proof: Suppose c divides a and b. By Theorem 28.7 we can write

ma + nb = gcd(a, b)

for some integers m,n ∈ Z. Since c divides a and b, it also divides ma + nb, by
Theorem 27.5. It follows that c divides gcd(a, b).

11. Let a, b, c ∈ Z. Prove that if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

Proof 1: Direct proof from previous results. Assume gcd(a, b) = gcd(a, c) = 1.
By the Euclidean Algorithm, we can write ma+nb = 1 and qa+ rc = 1, so that:

(1)(1) = (ma + nb)(qa + rc)
= (ma)(qa) + (nb)(qa) + (ma)(rc) + (nb)(rc)
= (maq + nbq + mrc)a + (nr)(bc).

That is, ka+`(bc) = 1 for k, ` ∈ Z, so Proposition 1(a) above gives gcd(a, bc) = 1.

Proof 2: Contrapositive. Assume the contrapositive hypothesis: d = gcd(a, bc) >
1. Then d has a prime factor p|d, with p|a and p|bc. By the Prime Lemma, this
means p|b, so that gcd(a, b) ≥ p > 1; or p|c, so that gcd(a, c) ≥ p > 1. In either
case, gcd(a, b) > 1 or gcd(a, c) > 1, which is the contrapositive conclusion.

12. Recall that the Fibonacci numbers are defined by F1 = 1, F2 = 1, and

Fn+1 = Fn−1 + Fn, n ≥ 2.



Prove that for all n ∈ N,
∑n

i=1 Fi = Fn+2 − 1.

Proof: Induction. Let A(n) be the formula for a given n ≥ 1.

Base: F1 = 1 = 2− 1 = F3 − 1, so A(1) is true.

Chain. Assume A(n): F1 + F2 + · · ·+ Fn = Fn+2 − 1 for some n ≥ 1. Then:

F1 + F2 + · · ·+ Fn + Fn+1 = (Fn+2 − 1) + Fn+1 by inductive hypothesis
= Fn+2 + Fn+1 − 1 = Fn+3 − 1 by recurrence for Fn+3

which gives the inductive conclusion A(n+1).

13. Let a, b, c, d ∈ Z with a and b nonzero. Prove that if ab - cd, then a - c or b - d.

Proof. Contrapositive. Assume the contrapositive hypothesis a|c and b|d. Then
c = na and d = mb, so that cd = nmab. This gives the contrapositive conclusion
ab | cd.

14. Let x be an irrational real number. Prove that either x2 or x3 is irrational.

Proof. Contrapositive. Assume the contrapositive hypothesis x2 and x3 are
rational, and x 6= 0. (The case x = 0 is obvious.) The the quotient of two
rational numbers is rational, so x = x2/x3 is rational, which is the contrapositive
hypothesis.


