Theorem (The Euclidean Algorithm). Let $x$ and $y$ be integers. Then there exist integers $q_{1}, q_{2}, \ldots, q_{k}$ and a descending sequence of positive integers, $r_{1}, \ldots, r_{k}, r_{k+1}=0$, such that:

$$
\begin{gathered}
x=q_{1} y+r_{1} \\
y=q_{2} r_{1}+r_{2} \\
r_{1}=q_{3} r_{2}+r_{3} \\
\vdots \\
r_{k-1}=q_{k} r_{k}+0
\end{gathered}
$$

Furthermore, $\operatorname{gcd}(x, y)=r_{k}$.

EX. Find a greatest common divisor of 4095 and 165 by using the Euclidean Algorithm.

$$
\begin{align*}
4095 & =24 \times 165+135  \tag{1}\\
165 & =1 \times 135+30  \tag{2}\\
135 & =4 \times 30+15  \tag{3}\\
30 & =2 \times 15 . \tag{4}
\end{align*}
$$

Theorem. Let $g$ be the greatest common divisor of $b$ and $c$. Then, there exist integers $x$ and $y$ such that $g=b x+c y$.

From the previous example, let's find integers $x$ and $y$. From the Euclidean Algortihm, by working backward we have

$$
\begin{align*}
15 & =135-4 \times 30 \quad \text { From Eq (3) } \\
& =135-4 \times(165-1 \times 135) \quad \text { From Eq (2) } \\
& =135-4 \times 165+4 \times 135 \\
& =5 \times 135-4 \times 165 \\
& =5 \times(4095-24 \times 165)-4 \times 165 \quad \text { From Eq (1) } \\
& =5 \times 4095-5 \times 24 \times 165-4 \times 165 \\
& =5 \times 4095-124 \times 165 \tag{5}
\end{align*}
$$

Therefore $x=5$ and $y=-124$.

Then, are $x$ and $y$ unique?
No! For example, we can think the following case :

$$
\begin{align*}
15 & =5 \times 4095-124 \times 165 \\
& =5 \times 4095-165 \times 4095+165 \times 4095-124 \times 165 \\
& =(5-165) \times 4095+(4095-124) \times 165 \\
& =-160 \times 4095+3971 \times 165 \tag{6}
\end{align*}
$$

Here $x=-160$ and $y=3971$. In conclusion, we can find so many different pairs of $x$ and $y$. There is no uniqueness for $x$ and $y$ such that $\operatorname{gcd}(b, c)=x b+c y$.

