## Homework due October 9th, 2013

1. Let $G=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is a bijective function $\}$. Show that the set $G$ together with function composition satisfies the four group axioms. That is,
$A_{1}$. Closure: $\forall f, g \in G, f \circ g \in G$.
Is this statement true? Give a brief explanation - you can use previous knowledge. You do not need to provide a detailed proof.
$A_{2}$. Associativity: $\forall f, g, h \in G,(f \circ g) \circ h=f \circ(g \circ h)$
Is this statement true for functions? No proof is needed.
$A_{3}$. Identity element: $\exists e \in G$ such that $\forall f \in G, f \circ e=e \circ f=f$.
What function corresponds to the identity element? Does it belong to the set $G$ ?
$A_{4}$. Inverse element: $\forall f \in G, \exists g \in G$ such that $f \circ g=g \circ f=e$.
What function corresponds to the inverse element of $f$ ? Does it belong to the set G? Why?

Is it true that $G$ together with function composition satisfies the following additional property: Commutativity: $\forall f, g \in G, f \circ g=g \circ f$ ?
Support your answer by an example.
2. Let the following abstract system be given.

Undefined terms: Gub, rok
$A_{1}$. There exist exactly five gubs.
$A_{2}$. Each rok is a subset of those five gubs.
$A_{3}$. There exist exactly two roks.
$A_{4}$. Each rok contains at least two gubs.
Which of the following models satisfy the above system? If a model does not satisfy the axiomatic system, explain which of the axioms is violated.

Model 1. The set of gubs is given by $\{A, B, C, D, E\}$. The set of roks is given by $\{\{A, B\},\{B, C, D\}\}$

Model 2. The set of gubs is given by $\{1,2,3,4,5\}$. The set of roks is given by $\{\{1,2\},\{2,3,4,5\}\}$

Model 3. The set of gubs is given by $\{\boldsymbol{\phi}, \diamond, \Omega, \boldsymbol{\uparrow}, \triangle\}$. The set of roks is given by $\{\{\boldsymbol{\mu}\},\{\diamond, \Omega, \boldsymbol{\uparrow}\}\}$

Model 4 is given by the figure below. Which of the above models is it equivalent to? Write the one-to-one correspondence between the elements of the two models.


