In Supplement 9/9, we defined the choose number, or binomial coefficient, $\binom{n}{k}$ to be the number of possible k-element subsets $S \subset[n]$, where $[n]=\{1,2, \ldots, n\}$. For example, $\binom{4}{2}=6$ counts the 2-element subsets $S \subseteq\{1,2,3,4\}$, namely: $S=\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$.

We can put these numbers into an array called Pascal's Triangle (in China, Yang Hui's Triangle; in Persia, Khayyam's Triangle):

We can compute the entries by the formula $\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}$, but there is an easier way. It is a remarkable fact that each entry in the triangle is the sum of the two entries immediately above it (except for the edges $\binom{n}{0}=\binom{n}{n}=1$). For example, the next row will be:

$$
\binom{5}{0}=1, \quad\binom{5}{1}=\binom{4}{0}+\binom{4}{1}=5, \quad\binom{5}{2}=\binom{4}{1}+\binom{4}{2}=10, \quad\binom{5}{3}=\binom{4}{2}+\binom{4}{3}=10, \ldots
$$

In general, the recurrence formula is:

$$
\begin{equation*}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} . \tag{*}
\end{equation*}
$$

Problem 1. Use the above recurrence to compute the $\binom{6}{k}$ and $\binom{7}{k}$ rows of the table.
Problem 2. Find the sum of each row: $\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}$, for $n=0,1, \ldots, 7$. Guess a general formula for this sum.
Problem 3. Prove your formula from Prob. 2 using a proposition from Supplement 9/9.
We can prove the recurrence formula (*) through the Bijection Principle:

- $\binom{n}{k}=|\mathcal{A}|$, where \mathcal{A} is the set of all k-element subsets of $[n]$.
- $\binom{n-1}{k-1}=\left|\mathcal{B}_{1}\right|$, where \mathcal{B}_{1} is the set of all $(k-1)$-element subsets of $[n-1]$.
- $\binom{n-1}{k}=\left|\mathcal{B}_{2}\right|$, where \mathcal{B}_{2} is the set of all k-element subsets of $[n-1]$.

If we can give a bijection $\phi: \mathcal{A} \rightarrow \mathcal{B}_{1} \cup \mathcal{B}_{2}$, then this will show that $|\mathcal{A}|=\left|\mathcal{B}_{1}\right|+\left|\mathcal{B}_{2}\right|$, which is precisely the recurrence formula $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$.

The bijection mapping ϕ is defined on k-element subsets of $[n]$ by: $\phi(S)=S^{\prime}=S \backslash\{n\}$, meaning we remove n from S if it is present, and leave $S^{\prime}=S$ otherwise. The result S^{\prime} is a subset of [$n-1$] with either $k-1$ or k elements.

For example, the bijection ϕ for $\binom{4}{2}=\binom{4}{1}+\binom{4}{2}$ is given in the table, where $S^{\prime}=\phi(S)$:

$S \in \mathcal{A}$	$\{1,2\}$	$\{1,3\}$	$\{1,4\}$	$\{2,3\}$	$\{2,4\}$	$\{3,4\}$
$S^{\prime} \in \mathcal{B}_{1}$ $\in B_{2}$	$\{1,2\}$	$\{1,3\}$		$\{2,3\}$		

Problem 4. Illustrate the mapping ϕ in the case of $\binom{5}{3}=\binom{4}{2}+\binom{4}{3}$. Make a table like the one above.

Problem 5. Formally define the inverse mapping $\psi: \mathcal{B}_{1} \cup \mathcal{B}_{2} \rightarrow \mathcal{A}$, which undoes ϕ. That is, given a subset $S^{\prime} \subset[n-1]$ with either $k-1$ or k elements, define the corresponding k-element $S \subset[n]$.

Take a fairly large example of S, and verify that $\psi(\phi(S))=S$; also take an example of S^{\prime} and verify that and $\phi\left(\psi\left(S^{\prime}\right)\right)=S^{\prime}$.

