Math 299

Homework 9/11

In Supplement 9/9, we defined the choose number, or binomial coefficient, $\binom{n}{k}$ to be the number of possible k-element subsets $S \subset [n]$, where $[n] = \{1, 2, ..., n\}$. For example, $\binom{4}{2} = 6$ counts the 2-element subsets $S \subseteq \{1, 2, 3, 4\}$, namely: $S = \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$.

We can put these numbers into an array called Pascal's Triangle (in China, Yang Hui's Triangle; in Persia, Khayyam's Triangle):

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} & 1 \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} & 1 & 1 \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} & = & 1 & 2 & 1 \\ 1 & 3 & 3 & 1 \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} & = & 1 & 3 & 3 & 1 \\ 1 & 4 & 6 & 4 & 1 \\ \vdots & \vdots \\ \end{pmatrix}$$

We can compute the entries by the formula $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$, but there is an easier way. It is a remarkable fact that each entry in the triangle is the sum of the two entries immediately above it (except for the edges $\binom{n}{0} = \binom{n}{n} = 1$). For example, the next row will be:

$$\binom{5}{0} = 1, \quad \binom{5}{1} = \binom{4}{0} + \binom{4}{1} = 5, \quad \binom{5}{2} = \binom{4}{1} + \binom{4}{2} = 10, \quad \binom{5}{3} = \binom{4}{2} + \binom{4}{3} = 10, \quad \dots$$

In general, the recurrence formula is:

$$(*) \qquad \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Problem 1. Use the above recurrence to compute the $\binom{6}{k}$ and $\binom{7}{k}$ rows of the table. **Problem 2.** Find the sum of each row: $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$, for $n = 0, 1, \ldots, 7$. Guess a general formula for this sum.

Problem 3. Prove your formula from Prob. 2 using a proposition from Supplement 9/9.

We can prove the recurrence formula (*) through the Bijection Principle:

- $\binom{n}{k} = |\mathcal{A}|$, where \mathcal{A} is the set of all k-element subsets of [n].
- $\binom{n-1}{k-1} = |\mathcal{B}_1|$, where \mathcal{B}_1 is the set of all (k-1)-element subsets of [n-1].
- $\binom{n-1}{k} = |\mathcal{B}_2|$, where \mathcal{B}_2 is the set of all k-element subsets of [n-1].

If we can give a bijection $\phi : \mathcal{A} \to \mathcal{B}_1 \cup \mathcal{B}_2$, then this will show that $|\mathcal{A}| = |\mathcal{B}_1| + |\mathcal{B}_2|$, which is precisely the recurrence formula $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

The bijection mapping ϕ is defined on k-element subsets of [n] by: $\phi(S) = S' = S \setminus \{n\}$, meaning we remove n from S if it is present, and leave S' = S otherwise. The result S' is a subset of [n-1] with either k-1 or k elements.

For example, the bijection ϕ for $\binom{4}{2} = \binom{4}{1} + \binom{4}{2}$ is given in the table, where $S' = \phi(S)$:

$S \in$	$\in \mathcal{A}$	$\{1, 2\}$	$\{1, 3\}$	$\{1, 4\}$	$\{2,3\}$	$\{2,4\}$	$\{3, 4\}$
$S' \in$	$\in \mathcal{B}_1$	$\{1, 2\}$	$\{1,3\}$		$\{2,3\}$		
6	$\equiv B_2$			{1}		$\{2\}$	$\{3\}$

Problem 4. Illustrate the mapping ϕ in the case of $\binom{5}{3} = \binom{4}{2} + \binom{4}{3}$. Make a table like the one above.

Problem 5. Formally define the inverse mapping $\psi : \mathcal{B}_1 \cup \mathcal{B}_2 \to \mathcal{A}$, which undoes ϕ . That is, given a subset $S' \subset [n-1]$ with either k-1 or k elements, define the corresponding k-element $S \subset [n]$.

Take a fairly large example of S, and verify that $\psi(\phi(S)) = S$; also take an example of S' and verify that and $\phi(\psi(S')) = S'$.