Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be given convergent series and let $c \neq 0$ be a constant.

1. Prove that $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges and

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n} .
$$

2. Prove that $\sum_{n=1}^{\infty} c a_{n}$ converges and

$$
\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n} .
$$

