Consider the following definitions. **Definition**

- If $\forall M > 0$, $\exists N$ such that $\forall n > N$, $n \in \mathbb{N}$, $s_n > M$, then the sequence diverges to $+\infty$. We write $\lim_{n \to \infty} s_n = +\infty$.
- If $\forall M < 0$, $\exists N$ such that $\forall n > N$, $n \in \mathbb{N}$, $s_n < M$, then the sequence diverges to $-\infty$. We write $\lim_{n \to \infty} s_n = -\infty$.

Using the above definitions,

1. prove that $\lim_{n \to \infty} \frac{n^2 + 4}{n+2} = +\infty.$

2. Prove that
$$\lim_{n \to \infty} \frac{n^3}{1-n} = -\infty$$
.