Consider the following definitions.

Definition

- If $\forall M>0, \exists N$ such that $\forall n>N, n \in \mathbb{N}, s_{n}>M$, then the sequence diverges to $+\infty$. We write $\lim _{n \rightarrow \infty} s_{n}=+\infty$.
- If $\forall M<0, \exists N$ such that $\forall n>N, n \in \mathbb{N}, s_{n}<M$, then the sequence diverges to $-\infty$. We write $\lim _{n \rightarrow \infty} s_{n}=-\infty$.

Using the above definitions,

1. prove that $\lim _{n \rightarrow \infty} \frac{n^{2}+4}{n+2}=+\infty$.
2. Prove that $\lim _{n \rightarrow \infty} \frac{n^{3}}{1-n}=-\infty$.
