Prove the following proposition.
Let $s_{n} \neq 0 \forall n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} s_{n}=s$, where $s \neq 0$, then $\exists m>0$ such that inf $\left(\left\{\left|s_{n}\right| \mid n \in\right.\right.$ $\mathbb{N}\})>m>0$.

The following steps might be helpful.

1. Draw a picture to convince yourself that the proposition makes sense.
2. Use the fact that $\lim _{n \rightarrow \infty} s_{n}=s$ and take $\varepsilon=\frac{|s|}{2}$.
3. Show that $\exists N$ such that $\left|s_{n}\right|>\frac{|s|}{2} \forall n>N, n \in \mathbb{N}$. You can write $|s|=\left|s-s_{n}+s_{n}\right|$, and apply the Triangle Inequality.
4. How can you define a lower bound, $m>0$, for the set $\left\{\left|s_{n}\right| \mid n \in \mathbb{N}\right\}$?
