1. Use the formal definition of limit of a sequence to prove the following.
(a) $\lim _{n \rightarrow \infty} \frac{2 n+1}{n+1}=2$
(b) $\lim _{n \rightarrow \infty} \frac{1}{3 n-1}=0$
2. Prove the following proposition.

Let $x, y \in \mathbb{R}$. Then $x=y$ if and only if $\forall \varepsilon>0,|x-y|<\varepsilon$.

Hint: For the direction " If $\forall \varepsilon>0,|x-y|<\varepsilon$, then $x=y$," prove the contrapositive statement. Take $\varepsilon=\frac{x-y}{2}$, assuming, without loss of generality, that $x>y$.

