- 1. Use the formal definition of limit of a sequence to prove the following.
 - (a) $\lim_{n \to \infty} \frac{2n+1}{n+1} = 2$ (b) $\lim_{n \to \infty} \frac{1}{3n-1} = 0$
- 2. Prove the following proposition.

Let $x, y \in \mathbb{R}$. Then x = y if and only if $\forall \varepsilon > 0, |x - y| < \varepsilon$.

Hint: For the direction "If $\forall \varepsilon > 0$, $|x - y| < \varepsilon$, then x = y," prove the contrapositive statement. Take $\varepsilon = \frac{x - y}{2}$, assuming, without loss of generality, that x > y.