Consider the modular number system \mathbb{Z}_{9}

1. Write the complete 9×9 addition and mulitiplication tables. For example, we have $\overline{6}+\overline{7}=\overline{1} \overline{3}=\overline{4}$, so in the addtion table, the entry in the $\overline{6}$ row and $\overline{7}$ column should be $\overline{4}$. Hint: For simplicity, don't write the lines over the numbers in the table: just keep in mind that all the entries are classes in \mathbb{Z}_{9}, so that everything is modulo 9 .
2. Looking at the multiplication table, determine which elements $\bar{a} \in \mathbb{Z}_{9}$ have inverses \bar{a}^{-1}.
3. Determine which elements have square roots. That is, for which $\bar{a} \in \mathbb{Z}_{9}$ is there some $\bar{b} \in \mathbb{Z}_{9}$ with $\bar{b}^{2}=\bar{a}$?
4. Use the quadratic formula to solve the equation $x^{2}+\overline{3} x+\overline{5}=\overline{0}$ for $x \in \mathbb{Z}_{9}$. (For this part of the problem, see the discussion below.)

Modular algebra. Since \mathbb{Z}_{p} (for p a prime) obeys all the usual axioms of addition and multiplication, almost everything we know about algebra carries over to \mathbb{Z}_{p}, provided we remember that $\bar{p}=\overline{0}$.

For example, the quadratic formula gives the solutions to the equation $a x^{2}+b x+c=0$:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Now, if we want to solve an equation like:

$$
x^{2}+\overline{2} x+\overline{3}=\overline{0} \quad \text { for } \quad x \in \mathbb{Z}_{11},
$$

we apply the quadratic formula to the number system \mathbb{Z}_{11}. We need the square root of $b^{2}-4 a c=-8=\overline{3}$, which by definition is some $y \in \mathbb{Z}_{11}$ with $y^{2}=\overline{3}$. By trial and error we find $\overline{5}^{2}=2 \overline{25}=\overline{3}$, so we take $y=\overline{5}$. Also, dividing by $2 a=\overline{2}$ means multiplying by $\overline{2}^{-1}=\overline{6}$. Thus we get:

$$
x=(-b \pm y)(2 a)^{-1}=(-\overline{2} \pm \overline{5})(\overline{6})=\overline{18},-\overline{4} 2=\overline{7}, \overline{2} .
$$

Check: for $x=\overline{7}$, we have: $(\overline{7})^{2}+\overline{2}(\overline{7})+\overline{3}=\overline{6} 6=\overline{0}$, and similarly for $x=\overline{2}$.

