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ABSTRACT

K-RATIONAL PREPERIODIC POINTS AND HYPERSURFACES ON
PROJECTIVE SPACE.

By

Sebastian Ignacio Troncoso Naranjo

The present thesis has two main parts. In the first one, we study bounds for the number

of rational preperiodic points of an endomorphism of P1. Let K be a number field and φ be

an endomorphism of P1 over K of degree d ≥ 2. Let S be the set of places of bad reduction

for φ (including the archimedean places). Let Per(φ,K), PrePer(φ,K), and Tail(φ,K) be

the set of K-rational periodic, preperiodic, and purely preperiodic points of φ, respectively.

If we assume that |Per(φ,K)| ≥ 4 (resp. |Tail(φ,K)| ≥ 3), we prove bounds for

|Tail(φ,K)| (resp. |Per(φ,K)|) that depend only on the number of places of bad reduc-

tion |S| (and not on the degree d). We show that the hypotheses of this result are sharp,

giving counterexamples to any possible result of this form when |Per(φ,K)| < 4 (resp.

|Tail(φ,K)| < 3). The key tool involved in these results is a bound for the number of

solutions of S-unit equations.

Using bounds for the number of solutions of the celebrated Thue-Mahler equation, we

obtain bounds for |Per(φ,K)| and |Tail(φ,K)| in terms of the number of places of bad

reduction |S| and the degree d of the rational function φ. Bounds obtained in this way are

a significant improvement to previous result given by J. Canci and L. Paladino.

In the second part of the thesis, we study the set of K-rational purely preperiodic hy-

persurfaces of Pn of a given degree for an endomorphism of Pn. Let φ be an endomorphism

of Pn over K, S be the set of places of bad reduction for φ and HTail(φ,K, e) be the set of



K-rational purely preperiodic hypersurfaces of Pn of degree e.

We give a strong arithmetic relation between K-rational purely preperiodic hypersurfaces

and K-rational periodic points. If we consider N =
(e+n
e

)
− 1 and assume that φ has at

least 2N + 1 K-rational periodic points such that no N + 1 of them lie in a hypersurface of

degree e then we give an effective bound on a large subset of HTail(φ,K, e) depending on e

and the number of places of bad reduction |S|. Finally, we prove that the set HTail(φ,K, e)

is finite if we assume that φ is an endomorphism of P2.
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KEY TO SYMBOLS

1. N the set of natural numbers.

2. N0 the set of non-negative integers.

3. Z, Q, R, C the set of integers, rational, real and complex numbers respectively.

4. ⊂ means subset.

5. ( means a proper subset.

6. |A| the cardinality of a set A.

7. i = (i0, . . . , in) ∈ Nn+1
0 an n+ 1-dimensional multi-index.

8. |i| = i0 + · · ·+ in

9. X = (X0, . . . , Xn) where X0, . . . , Xn are n+ 1 variables.

10. Xi = X
i0
0 · · ·X

in
n

11. R∗ the group of units of a ring R.

12. K a number field.

13. K̄ an algebraic closure of K.

14. O the ring of integers of K.

15. p a non-zero prime ideal of O.

16. vp the p-adic valuation on K corresponding to the prime ideal p (we always assume vp
to be normalized so that vp(K∗) = Z).

17. If the context is clear, we will also use vp(I) for the p-adic valuation of a fractional
ideal I of K.

18. S a fixed finite set of places of K including all archimedean places.

19. |S| = s the cardinality of S.

20. OS = {x ∈ K : vp(x) ≥ 0 for every prime ideal p /∈ S} the ring of S-integers.

21. O∗S = {x ∈ K : vp(x) = 0 for every prime ideal p /∈ S} the group of S-units.

• Let φ be an endomorphism of Pn defined over K.
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22. Per(φ,K) the set of K-rational periodic points.

23. Tail(φ,K) the set of K-rational tail points.

24. PrePer(φ,K) the set of K-rational preperiodic points.

25. HPer(φ,K, e) the set of K-rational periodic hypersurfaces of degree e.

26. HTail(φ,K, e) the set of K-rational tail hypersurfaces of degree e.

27. HPrePer(φ,K, e) the set of K-rational preperiodic hypersurfaces of degree e.

28. HPer(φ,K) the set of K-rational periodic hypersurfaces.

29. HTail(φ,K) the set of K-rational tail hypersurfaces.

30. HPrePer(φ,K) the set of K-rational preperiodic hypersurfaces.
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Chapter 1

Introduction

Let S be a set and φ : S → S a function mapping the set S to itself. A (discrete) dynamical

system is a pair consisting of the set S and the function φ. We denote by φn the nth iterate

of φ under composition and by φ0 the identity map. The orbit of P ∈ S under φ is the set

Oφ(P ) = {φn(P ) : n ≥ 0}.

The set S could be simply a set with no additional structure but most frequently we

study dynamics when the set S has some additional structure. In arithmetic dynamics we

are interested when the set S is an arithmetic set such as Z, Q, number fields K, quasi-

projective variety, K-rational points, etc. and the function φ is a polynomial, a rational

map, an endomorphism, etc. In this arithmetic context the Principal Goal of Dynamics

is to classify the points P in S according to the behavior of their orbits Oφ(P ) when S is an

arithmetic set.

Let K be a number field. Our study in arithmetic dynamics will be when S is PN (K)

and φ an endomorphism of PN of degree d ≥ 2. A point P ∈ PN (K) is called periodic under

φ if there is an integer n > 0 such that φn(P ) = P . It is called preperiodic under φ if there is

an integer m ≥ 0 such that φm(P ) is periodic. A point that is preperiodic but not periodic

is called a tail point. Let Tail(φ,K), Per(φ,K) and PrePer(φ,K) be the sets of K-rational

tail, periodic and preperiodic points of φ, respectively.

A first objective of this thesis is to study the cardinality of the sets Tail(φ,K), Per(φ,K)
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and PrePer(φ,K). We start by asking

• Is the set of K-rational preperiodic points finite or infinite?.

• If finite, can we give an effective bound?.

Northcott [Nor50] proved in 1950 that the total number of K-rational preperiodic points

of φ is finite. In fact, from Northcott’s proof, an explicit bound can be found in terms of the

coefficients of φ, the number field K and the dimension N .

Even when Northcott answered both questions, a bound for PrePer(φ,K) in terms of

only a few basic parameters is desired. In 1994, Morton and Silverman [MS94] conjectured

the celebrated Uniform Boundedness Conjecture (UBC) which predicts the existence of such

a bound depending only on d, the dimension of the projective space and the degree of K.

Conjecture 1.0.1 (Uniform Boundedness Conjecture).

Let K be a number field with [K : Q] = D, and let φ be an endomorphism of PN , defined

over K. Let d ≥ 2 be the degree of φ. Then there is C = C(D,N, d) such that φ has at most

C preperiodic points in PN (K).

This conjecture is an extremely strong uniformity conjecture. For example, the UBC on

maps of degree 4 on P1 defined over Q implies Mazur’s theorem that the torsion subgroup of

an elliptic curve E/Q is bounded independently of E. More generally, the UBC for maps of

degree 4 on P1 defined over K implies Merel’s theorem that the size of the torsion subgroup

of an elliptic curve over a number field K is bounded only in terms of the degree of [K : Q].

The conjecture can also be applied to Lattès maps and abelian varieties, for more detail see

[Fak01], [Maz77] and [Mer96].

Poonen [Poo98] later stated a sharper version of the conjecture for the special case of

quadratic polynomials over Q. Since every such quadratic polynomial map is conjugate to
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a polynomial of the form ψc(z) = z2 + c with c ∈ Q we can state Poonen’s conjecture as

follows:

Conjecture 1.0.2 (Poonen’s conjecture).

Let ψc ∈ Q[z] be a polynomial of degree 2 of the form ψc(z) = z2 + c with c ∈ Q. Then

|PrePer(ψc,Q)| ≤ 9.

Even though Poonen’s Conjecture is arguably the simplest case of the UBC, a proof

of Poonen’s Conjecture seems to be very far off at this time. If we consider polynomials

of the form ψc(z) = z2 + c with c ∈ Q, B. Hutz and P. Ingram [HI13] have shown that

Poonen’s conjecture holds when the numerator and denominator of c don’t exceed 108. For

more information on quadratic rational functions see [BCH+14], [Can10], [FHI+09], [Man07],

[MN06], [Poo98].

Even though the UBC or Poonen’s conjecture are impossible to prove at the moment, if

we allow the bound from the UBC to depend on one more parameter, then effective results

can be given in the case of P1.

In the first half of the thesis we work in the case N = 1, so from now we assume that φ

is an endomorphism of P1. Let S be the set of places of K at which φ has bad reduction,

including all archimedean places of K. The nonarchimedean places of bad reduction are

those in which the degree of the reduction of φ in the residue field decreases. In other words,

a place is said to be a place of good reduction if φ has a good behavior in the residue field

associated with the place. Then the extra parameter needed to give effective results is the

cardinality of S.

The first main result of this thesis [[Tro], Corollary 1.3.] gives a bound for |PrePer(φ,K)|
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in terms of the number of places of bad reduction |S| and the degree of the rational function

φ. This bound significantly improves a previous bound given by J. Canci and L. Paladino

[CP16].

In the second result, assuming that |Tail(φ,K)| ≥ 3 (resp. |Per(φ,K)| ≥ 4 ), we prove

bounds for |Per(φ,K)| (resp. |Tail(φ,K)| ) that depend only on the number of places of

bad reduction |S| and [K : Q] (and not on the degree of φ). We show that the hypotheses

of this result are sharp. ?? and ?? give counterexamples to any possible result of this form

when |Tail(φ,K)| < 3 (resp. |Per(φ,K)| < 4).

Theorem 1.0.3. Let K be a number field and S a finite set of places of K containing all the

archimedean ones. Let φ be an endomorphism of P1, defined over K, and d ≥ 2 the degree

of φ. Assume φ has good reduction outside S.

(a) If there are at least three K-rational tail points of φ then

|Per(φ,K)| ≤ 216|S| + 3.

(b) If there are at least four K-rational periodic points of φ then

|Tail(φ,K)| ≤ 4(216|S|).

Using the previous theorem, we can deduce a bound for |PrePer(φ,K)| in terms of |S|

and the degree of φ for any endomorphism of P1.

Corollary 1.0.4. Let K be a number field and S a finite set of places of K containing all

the archimedean ones. Let φ be an endomorphism of P1, defined over K, and d ≥ 2 the

degree of φ. Assume φ has good reduction outside S. Then
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(a) |Per(φ,K)| ≤ 216|S|d3
+ 3.

(b) |Tail(φ,K)| ≤ 4(216|S|d3
).

(c) |PrePer(φ,K)| ≤ 5(216|S|d3
) + 3.

These bounds depend, ultimately, on a reduction to S-unit equations. Using a reduction

to Thue-Mahler equations instead, we obtain a better bound for |Tail(φ,K)| in terms of |S|

and d.

Theorem 1.0.5. Let K be a number field and S a finite set of places of K containing all the

archimedean ones. Let φ be an endomorphism of P1, defined over K, and d ≥ 2 the degree

of φ. Assume φ has good reduction outside S. Then

|Tail(φ,K)| ≤ dmax
{

(5 · 106(d3 + 1))|S|+4, 4(264(|S|+3))
}
.

To get a similar bound for |Per(φ,K)| we need to assume that φ has at least one K-

rational tail point. Under this assumption, using Theorem 1.0.3 and results about Thue-

Mahler equations, we can get:

Theorem 1.0.6. Let K be a number field and S a finite set of places of K containing all the

archimedean ones. Let φ be an endomorphism of P1, defined over K, and d ≥ 2 the degree

of φ. Assume φ has good reduction outside S. If φ has at least one K-rational tail point then

|Per(φ,K)| ≤ max
{

(5 · 106(d− 1))|S|+3, 4(2128(|S|+2))
}

+ 1.

While the work described so far was being carried out, Canci and Vishkautsan [CV]

proved a bound for |Per(φ,K)|, just assuming that φ has good reduction outside S. Their
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bound on |Per(φ,K)| is roughly of the order of d216|S| + 22187|S| where d ≥ 2 is the degree

of φ.

Now let’s go through previous bounds for |PrePer(φ,K)| which are relevant for our work.

In 2007, Canci [Can07] proved for rational functions with good reduction outside S that the

length of finite orbits is bounded by:

[
e1012

(|S|+ 1)8(log(5(|S|+ 1)))8
]|S|

. (1.1)

Note that this bound depends only on the cardinality of S.

In Canci’s recent work (2014) with Paladino [CP16] a sharper bound for the length of

finite orbits was found:

max
{

(216|S|−8 + 3) [12|S| log(5|S|)][K:Q] , [12(|S|+ 2) log(5|S|+ 5)]4[K:Q]
}
. (1.2)

In our work we are interested in the number of K-rational tail points and K-rational

periodic points, |Tail(φ,K)| and |Per(φ,K)| respectively.

The bounds mentioned in (1.1) and (1.2) can be used to deduce bounds on |PrePer(φ,K)|.

For instance, if we assume that every finite orbit has cardinality given by (1.1) and using that

every point could have at most d preimages under φ we obtain a bound for |PrePer(φ,K)|

that is roughly of the order of d(|S| log |S|)8|S| where d ≥ 2 is the degree of φ. Similarly, the

bound deduced from (1.2) is roughly of the order of d216|S|(|S| log(|S|)[K:Q]
, where d ≥ 2 is

the degree of φ. These bounds are polynomial in the degree of φ, however they will be rather

large in terms of |S|.

In 2007, Benedetto [Ben07] proved for the case of polynomial maps of degree d ≥ 2 that
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|PrePer(φ,K)| is bounded by O(|S| log |S|), where S is the set of places of K at which φ has

bad reduction, including all archimedean places of K. The big-O is essentially d2−2d+2
log d for

large |S|.

Results in positive characteristic have also been found. For instance, in 2007 Ghioca

[Ghi07] proved a bound for the number of torsion points of a Drinfeld module. In this case,

torsion points are preperiodic points under the action of an additive polynomial of degree

larger than one.

Another result in characteristic different from 0 is the work of Canci and Paladino [CP16]

which gives a bound for the length of finite orbits under an endomorphism of P1.

The second part of this thesis provides quantitative and finiteness results for the set

of K-rational tail curves of degree e for a given endomorphism of P2. Compared to the

1-dimensional case, a primary difficulty in proving higher-dimensional results comes from

the limited availability of arithmetic tools in higher dimensions. Indeed, arithmetic tools

used frequently in the one-dimensional setting include Siegel’s theorem, Faltings’ theorem,

and Roth’s theorem. Higher-dimensional conjectural generalizations of these results remain

largely open, even for surfaces (e.g., Bombieri-Lang conjecture, Vojta’s conjecture). A sec-

ondary difficulty comes from the more complicated geometry possible in higher dimensions.

For instance, general position conditions (which appear, for example, in Vojta’s conjecture)

are rather trivial and uninteresting on curves. For these reasons, any progress towards the

UBC in higher dimensions is highly valuable.

Even though the UBC in PN is very hard there are some results on the literature. For

instance, Hutz [Hut15] provides an algorithm to find Q-rational preperiodic points for endo-

morphisms of Pn. His techniques may be used to find a bound for the cardinality of the set

of Q-rational periodic points, depending on the smallest prime of good reduction.
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Another important study in dimension bigger than one is the papers by J. Bell, D. Ghioca,

and T. Tucker [BGT15], [BGT16]. In these papers we can find an example of infinitely

many fixed curves for an endomorphism of P2. Indeed if f is a homogeneous two-variable

polynomial of degree n, then the morphism P2 → P2 given by [x : y : z]→ [f(x, z) : f(y, z) :

zn] has infinitely many f -invariant curves of the form [xzn
k−1 : fk(x, z) : zn

k
], where fk is

the homogenized kth iterate of the dehomogenized one-variable polynomial x→ f(x, 1).

Motivated by the example of J. Bell, D. Ghioca, and T. Tucker and the Silverman-

Morton Conjecture I study the set of K-rational preperiodic hypersurfaces of PN under an

endomorphism of PN . Let φ be an endomorphism of PN , defined over K, of degree d and H

an irreducible K-rational hypersurface of PN of degree e. We say that H is periodic under

φ if there is an integer n > 0 such that φn(H) = H. It is called preperiodic under φ if there

is an integer m ≥ 0 such that φm(H) is periodic. If H is preperiodic but not periodic it

is called a tail hypersurface. Let HTail(φ,K, e), HPer(φ,K, e) and HPrePer(φ,K, e) be the

sets of K-rational tail, periodic and preperiodic hypersurfaces of degree e of φ, respectively.

It is important to notice that the degree of the preperiodic hypersurface will be involved

in our study. This new parameter does not come up for points because the degree of a

(geometric) point is always 1. However, this extra parameter is a natural condition because

similar examples to the one given by J. Bell, D. Ghioca, and T. Tucker could be given

if we consider subschemes in place of subvarieties. For instance, if instead of subvarieties

we consider more generally integral closed K-subschemes, then a curve does have infinitely

many periodic K-integral closed subschemes, because we can just take K-components of

the subscheme of periodic points of period n. However, if we bound the degree of the K-

subschemes, then once again we get finiteness by Northcott’s theorem.

The main idea of my results on P1 [Tro] lies in an arithmetic relation between K-rational
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tail points and K-rational periodic points. Using a generalization of the p-adic logarithmic

distance in P1, I was able to generalize the relation between K-rational tail points and K-

rational periodic points to a relation between K-rational tail hypersurfaces and K-rational

periodic points.

Theorem 1.0.7. Let φ be an endomorphism of Pn, defined over K. Suppose φ has good

reduction outside S. Let H be a K-rational tail hypersurface, m the period of the periodic

part of the orbit of H and H ′ the periodic hypersurface such that H ′ = φm0m(H) for some

m0 > 0. Let P ∈ Pn(K) be any periodic point such that P /∈ supp{H ′}. Then δv(P ;H) = 0

for every v /∈ S.

In [GTZ11] Bell, Ghioca and Tucker also propose the following question

Question: Is there a constant C = C(N,K, d) such that for any periodic K-rational

subvariety V of PN , we have PerΦ(V ) ≤ C?

Using the previous arithmetic relation together with a result from Ru and Wong [RW91]

we give a result that implies a partial answer to the previous question for curves on the

projective plane. In fact, we provide a bound for the number of K-rational tail hypersurfaces

of degree e in the backwards orbit of a given periodic K-rational hypersurface of Pn.

Theorem 1.0.8. Let φ be an endomorphism of Pn, defined over K and suppose φ has good

reduction outside S. Consider N =
(e+n
e

)
−1 and let {Pi}2N+1

i=1 be a set of K-rational periodic

points of Pn such that no N + 1 of them lie in a curve of degree e. Consider B = {H ′ ∈

HPer(φ,K) : ∀1 ≤ i ≤ 2N + 1, Pi /∈ supp H ′} and A = {q ∈ HTail(φ,K, e) : there is H ′ ∈

B and l ≥ 0, φlnq(q) = H ′ where nq is the period of the periodic part of q}. Then

|A| ≤
(

233 · (2N + 1)2
)(N+1)3(s+2N+1)

9



In 2016 B. Hutz [Hut16] proved that the set of K-rational preperiodic subvarieties of

Pn is finite. His proof is based on the theory of canonical height functions. In the special

case of K-rational preperiodic curves of P2 we were able to give an alternative proof than

the one given by Hutz. This alternative proof is based in a strong result of dynamical

systems ([Fak03], Corollary 5.2) which states that if φ is an endomorphism of Pn then the

set Per(φ, K̄) for an endomorphism φ is Zariski dense in Pn.

Theorem 1.0.9. Let K be a number field and φ be an endomorphism of P2, defined over

K. Then for every e ∈ N the set HTail(φ,K, e) is finite.

We end this introduction with a brief outline of the rest of the thesis. ?? introduces

some classical notations and definitions from arithmetic dynamics, arithmetic geometry and

number theory. We also prove some propositions needed for the main theorems of this

manuscript.

?? presents the proof of our results on P1. This chapter has three sections: the first

section gives all the propositions and lemmas needed for the next two sections, the second

section uses S-unit equations to get bounds for the set of K-rational preperiodic points

and the third section uses Thue-Mahler equations to gives different bounds for the set of

K-rational preperiodic points.

Finally, ?? presents definitions and results on PN . This chapter has four sections: the

first one gives definitions and propositions on PN . The second section give effective results

for a large subset of the set of K-rational tail hypersurfaces of PN of a given degree. The

third section prove finiteness of the set of K-rational tail curves of degree e of P2. The last

section gives examples of K-rational tail and periodic hypersurfaces of PN .

10



BIBLIOGRAPHY

11



BIBLIOGRAPHY

[Bak64] I. Baker. Fixpoints of polynomials and rational functions. J. London Math. Soc.,
39:615–622, 1964.

[BCH+14] R. Benedetto, R. Chen, T. Hyde, Y. Kovacheva, and C. White. Small dynamical
heights for quadratic polynomials and rational functions. Exp. Math., 23(4):433–
447, 2014.

[Ben07] R. Benedetto. Preperiodic points of polynomials over global fields. J. Reine
Angew. Math., 608:123–153, 2007.

[BGT15] J. Bell, D. Ghioca, and T. Tucker. Applications of p-adic analysis for bounding
periods for subvarieties under étale maps. Int. Math. Res. Not. IMRN, (11):3576–
3597, 2015.

[BGT16] J. Bell, D. Ghioca, and T. Tucker. The dynamical Mordell-Lang conjecture,
volume 210 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI, 2016.

[BS96] F. Beukers and H. Schlickewei. The equation x + y = 1 in finitely generated
groups. Acta Arith., 78(2):189–199, 1996.

[Can07] J. Canci. Finite orbits for rational functions. Indag. Math. (N.S.), 18(2):203–214,
2007.

[Can10] J. Canci. Rational periodic points for quadratic maps. Ann. Inst. Fourier (Greno-
ble), 60(3):953–985, 2010.

[CP16] J. Canci and L. Paladino. Preperiodic points for rational functions defined over
a global field in terms of good reduction. Proc. Amer. Math. Soc., 144(12):5141–
5158, 2016.

[CV] J. Canci and S. Vishkautsan. Scarcity of cycles for rational functions over a
number field. Trans. Amer. Math. Soc. Ser. B, to appear.

[Eve95] J. Evertse. The number of solutions of decomposable form equations. Invent.
Math., 122(3):559–601, 1995.

[Eve97] J. Evertse. The number of solutions of the Thue-Mahler equation. J. Reine
Angew. Math., 482:121–149, 1997.

12



[Fak01] N. Fakhruddin. Boundedness results for periodic points on algebraic varieties.
Proc. Indian Acad. Sci. Math. Sci., 111(2):173–178, 2001.

[Fak03] N. Fakhruddin. Questions on self maps of algebraic varieties. J. Ramanujan
Math. Soc., 18(2):109–122, 2003.

[FHI+09] X. Faber, B. Hutz, P. Ingram, R. Jones, M. Manes, T. Tucker, and M. Zieve.
Uniform bounds on pre-images under quadratic dynamical systems. Math. Res.
Lett., 16(1):87–101, 2009.

[Ghi07] D. Ghioca. The Lehmer inequality and the Mordell-Weil theorem for Drinfeld
modules. J. Number Theory, 122(1):37–68, 2007.

[GTZ11] D. Ghioca, T. Tucker, and S. Zhang. Towards a dynamical Manin-Mumford
conjecture. Int. Math. Res. Not. IMRN, (22):5109–5122, 2011.

[HI13] B. Hutz and P. Ingram. On Poonen’s conjecture concerning rational preperiodic
points of quadratic maps. Rocky Mountain J. Math., 43(1):193–204, 2013.

[Hut15] B. Hutz. Determination of all rational preperiodic points for morphisms of PN.
Math. Comp., 84(291):289–308, 2015.

[Hut16] B. Hutz. Good reduction and canonical heights of subvarieties. ArXiv e-prints,
March 2016.

[Kis95] M. Kisaka. On some exceptional rational maps. Proc. Japan Acad. Ser. A Math.
Sci., 71(2):35–38, 1995.

[Man07] M. Manes. Arithmetic dynamics of rational maps. ProQuest LLC, Ann Arbor,
MI, 2007. Thesis (Ph.D.)–Brown University.

[Maz77] B. Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci.
Publ. Math., (47):33–186 (1978), 1977.

[Mer96] L. Merel. Bornes pour la torsion des courbes elliptiques sur les corps de nombres.
Invent. Math., 124(1-3):437–449, 1996.

[MN06] R. Marsza lek and W. Narkiewicz. Finite polynomial orbits in quadratic rings.
Ramanujan J., 12(1):91–130, 2006.

[MS94] P. Morton and J. Silverman. Rational periodic points of rational functions. In-
ternat. Math. Res. Notices, (2):97–110, 1994.

[Nor50] D. Northcott. Periodic points on an algebraic variety. Ann. of Math. (2), 51:167–
177, 1950.

13



[NW02] J. Noguchi and J. Winkelmann. Holomorphic curves and integral points off divi-
sors. Math. Z., 239(3):593–610, 2002.

[Poo98] B. Poonen. The classification of rational preperiodic points of quadratic polyno-
mials over Q: a refined conjecture. Math. Z., 228(1):11–29, 1998.

[Rib01] P. Ribenboim. Classical theory of algebraic numbers. Universitext. Springer-
Verlag, New York, 2001.

[RW91] M. Ru and P. Wong. Integral points of Pn − {2n +
1 hyperplanes in general position}. Invent. Math., 106(1):195–216, 1991.

[Sil07] J. Silverman. The arithmetic of dynamical systems, volume 241 of Graduate Texts
in Mathematics. Springer, New York, 2007.

[Tro] S. Troncoso. Bound for preperiodic points for maps with good reduction. J.
Number Theory, to appear.

[Voj87] P. Vojta. Diophantine approximations and value distribution theory, volume 1239
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.

14


	Key To Symbols
	Chapter 1Introduction
	Bibliography

