BASIC TOPOLOGICAL FACTS

TOPOLOGIES

Definition: A **topology** on a set X is a collection \mathcal{T} of subsets of X having the following properties:

$$1. \emptyset, X \in \mathcal{T}$$

$$2. \ U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}$$

3.
$$U_{\alpha} \in \mathcal{T}, \forall \alpha \in \Lambda \implies \bigcup_{\alpha \in \Lambda} U_{\alpha} \in \mathcal{T}$$

Definition: A **topological space** (X, \mathcal{T}) is an ordered pair where X is a set and \mathcal{T} is a topology on X.

Definition: If $U \in \mathcal{T}$, we say that U is an **open** subset of X.

Proposition: If $\{U_i\}_{i=1}^n \subseteq \mathcal{T}$ for some n, then $\bigcap_{i=1}^n \in \mathcal{T}$.

Proposition: $U \in \mathcal{T} \Leftrightarrow \forall x \in U, \exists V \in \mathcal{T} \text{ such that } x \in V \subseteq U.$

(Thus U is an open subset of X iff for each $x \in U$, there exists an **open neighborhood** V of x such that $V \subseteq U$.)

BASES

Definition: If (X, \mathcal{T}) is a topological space, a **basis** for \mathcal{T} is a subcollection \mathcal{B} of \mathcal{T} with the property that if $U \in \mathcal{T}$ then there is a subcollection \mathcal{B}' (possibly empty) of \mathcal{B} such that $U = \bigcup_{B \in \mathcal{B}'} B$.

Proposition: \mathcal{B} is a basis for \mathcal{T} iff $\forall x \in U, \exists B \in \mathcal{B}$ such that $x \in B \subseteq U$.

Proposition: Given a set X, let \mathcal{B} be a collection of subsets of X satisfying the properties:

$$1. X = \bigcup_{B \in \mathcal{B}} B$$

2. $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2 \implies \exists B \in \mathcal{B}$ such that $x \in B \subseteq B_1 \cap B_2$

Then the collection of all unions (possibly empty) of elements of \mathcal{B} forms a topology \mathcal{T} on X and \mathcal{B} is a basis for \mathcal{T} .

SUBBASES

Definition: If (X, \mathcal{T}) is a topological space, a **subbasis** for \mathcal{T} is a subcollection \mathcal{L} of \mathcal{T} such that the collection of all finite intersections (possibly empty) of elements of \mathcal{L} is a basis for \mathcal{T} .

Proposition: Given a set X, let \mathcal{L} be a collection of subsets of X. Then the collection of all unions (possibly empty) of all finite intersections (possibly empty) of elements of \mathcal{L} forms a topology on X and \mathcal{L} is a subbasis for \mathcal{T} .

SUBSPACES AND PRODUCT SPACES

Proposition: Let (X, \mathcal{T}) be a topological space. Let $A \subseteq X$. Let $\mathcal{T}_A = \{B \subseteq A : B = A \cap U \text{ for some } U \in \mathcal{T}\}$. Then \mathcal{T}_A is a topology on A.

Definition: Let (X, \mathcal{T}) be a topological space. Let $A \subseteq X$. Then \mathcal{T}_A is called the **subspace topology** on A, and (A, \mathcal{T}_A) is called a **topological subspace** of (X, \mathcal{T}) .

Remark: Let (A, \mathcal{T}_A) be a topological subspace of a topological space (X, \mathcal{T}) . B is an open subset of A iff $B = A \cap U$ for some open subset U of X.

Proposition: Let $\{(X_i, \mathcal{T}_i)\}_{i=1}^n$ be a set of topological spaces. Let $\mathcal{B} = \{U_1 \times \cdots \times U_n : U_i \in \mathcal{T}_i, \forall i = 1, \cdots, n\}$. Then \mathcal{B} is a basis for some topology \mathcal{T} .

Definition: Let $\{(X_i, \mathcal{T}_i)\}_{i=1}^n$ be a set of topological spaces. The topology \mathcal{T} generated by \mathcal{B} in the previous proposition is called the **product topology** on $X_1 \times \cdots \times X_n$, and $(X_1 \times \cdots \times X_n, \mathcal{T})$ is called a **product space**.

MAPS

Definition: Let $\xi: X \to Y$ and let $A \subseteq X$. A is said to be **saturated** if $A = \xi^{-1}(\xi(A))$.

Proposition: If $f: X \to Y$ is injective, and $A \subseteq X$, then A is saturated.

Definition: Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. A map $f: X \to Y$ is said to be **continuous** if $V \in \mathcal{T}_2 \Rightarrow f^{-1}(V) \in \mathcal{T}_1$ (thus for every open subset V of Y, $f^{-1}(V)$ is an open subset of X.)

Proposition: Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. If $f: X \to Y$ is continuous, $A \subseteq X$, and $f(X) \subseteq B \subseteq Y$ then $f|_A^B: A \to B$ is continuous.

Definition: Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. A map $f: X \to Y$ is said to be **open** if $U \in \mathcal{T}_1 \Rightarrow f(U) \in \mathcal{T}_2$ (thus for every open subset U of X, f(U) is an open subset of Y.)

Definition: Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. A map $f: X \to Y$ is said to be a **homeomorphism** if

- 1. f is bijective
- 2. f and f^{-1} are continuous.

Proposition: Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. Let $f: X \to Y$ be a bijective continuous map. Then $f: X \to Y$ is a homeomorphism iff $f: X \to Y$ is an open map.

QUOTIENT MAPS

Definition: Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. A map $f: X \to Y$ is said to be a **quotient map** if

- 1. f is surjective
- 2. £ is continuous

3. If $B \subseteq Y$ such that $f^{-1}(B)$ is an open subset of X, then B is an open subset of Y (i.e. $f^{-1}(B) \in \mathcal{T}_1 \implies B \in \mathcal{T}_2$)

Remark: Conditions 2 and 3 above are sometimes written together as "B is an open subset of Y iff $f^{-1}(B)$ is an open subset of X"

Important Point: Condition 3 does **NOT** imply that $f: X \to Y$ is an open map. Thus we can **NOT** say that A an open subset of $X \Rightarrow f(A)$ is an open subset of Y. The problem is that for any generic subset $A \subseteq X$, A is not necessarily saturated. In general, quotient maps need not be injective.

Proposition: If $f: X \to Y$ is a quotient map, f takes **saturated** open sets to open sets.

Proposition: Let (X, \mathcal{T}_1) be a topological space. Let $f: X \to Y$ be a surjective map. Let $\mathcal{T}_2 = \{U \subseteq Y : f^{-1}(U) \in \mathcal{T}_1\}$. Then \mathcal{T}_2 is a topology on X and $f: X \to Y$ is a quotient map.

Definition: The topology \mathcal{T}_2 constructed in the above proposition is called the **quotient topology** on Y induced by f.

Proposition: Let (X, \mathcal{T}_1) be a topological space. Let \sim be an equivalence relation on X. Let X/\sim denote the set of equivalence classes defined by \sim . Let $\pi: X \to X/\sim$ denote the natural projection $\pi(x) = [x]$. Then $\pi: X \to X/\sim$ is surjective and letting \mathcal{T}_2 be the quotient topology on X/\sim induced by π , $\pi: X \to X/\sim$ is a quotient map.

Definition: Let (X, \mathcal{T}_1) be a topological space, and let \sim be an equivalence relation on X. If \mathcal{T}_2 is the quotient topology on X/\sim , $(X/\sim, \mathcal{T}_2)$ is called the **quotient space** of (X, \mathcal{T}_1) with respect to \sim .

Proposition: If $f: X \to Y$ is a quotient map, and $A \subseteq X$ is a **saturated open** set, then $f|_A: A \to Y$ and $f|_A^{f(A)}: A \to f(A)$ are quotient maps.

Proposition: If $\xi: X \to Y$ is a quotient map and U is an open subset of Y, then $\xi|_{\xi^{-1}(U)}^U: \xi^{-1}(U) \to U$ is a quotient map.

Proposition: If $f: X \to Y$ is a homeomorphism, f is a quotient map.

Proposition: If $\xi_1: X \to Y$ is a quotient map and $\xi_2: Y \to Z$ is a quotient map, then $\xi_2 \circ \xi_1: X \to Z$ is a quotient map.

Proposition (Universal Property of Quotient Maps): Let (X, \mathcal{T}_1) , (Y, \mathcal{T}_2) , and (Z, \mathcal{T}_3) be topological spaces. Let $\pi: X \to Y$ be a quotient map. Then $f: Y \to Z$ is continuous iff $f \circ \pi: X \to Z$ is continuous.

SECOND COUNTABLE, HAUSDORFF, LOCALLY EUCLIDEAN

Definition: A topological space (X, \mathcal{T}) is called **second countable** if \mathcal{T} has a countable basis.

Definition: A topological space (X, \mathcal{T}) is called **Hausdorff** if $\forall p_1, p_2 \in X$ with $p_1 \neq p_2, \exists U_1, U_2 \in \mathcal{T}$ (i.e. U_1, U_2 are open subsets of X) such that $p_1 \in U_1, p_2 \in U_2$ and $U_1 \cap U_2 = \emptyset$.

Definition: A topological space (X, \mathcal{T}) is called **locally Euclidean** if $\forall p \in X, \exists U \in \mathcal{T}$ (i.e. U is an open subset of X) with $p \in U, \exists V \subseteq \mathbb{R}^n$ with V an open subset of \mathbb{R}^n , and \exists a homeomorphism $\varphi: U \to V$.

Proposition: Any subspace of a Hausdorff space is Hausdorff and any product of Hausdorff spaces is Hausdorff.

Proposition: Any subspace of a second countable space is second countable and any product of second countable spaces is second countable.

Proposition (Quotient Space Result): Let $f: X \to Y$ be a quotient map. If X is second countable and Y is locally Euclidean, then Y is second countable.