# MORE ON THE TENSOR PRODUCT 

## Steven Sy

October 18, 2007

### 3.1 Commutative Rings

## A. Introduction

Let $R$ be a commutative ring (with 1 ).

Let $M_{1}$ and $M_{2}$ be $R$-modules.

Then the abelian group $M_{1} \otimes_{R} M_{2}$ is an $R$-module under scalar multiplication defined by $r(a \otimes b)=(r a) \otimes b$.

Definition: Let $M_{1}, M_{2}, M$ be $R$-modules.

Then $f: M_{1} \times M_{2} \rightarrow M$ is called an $R$-bilinear function if $f$ satisfies the following properties:

1. $f$ is $R$-biadditive
2. $r f(a, b)=f(r a, b)=f(a, r b) \quad \forall r \in R, a \in M_{1}, b \in M_{2}$

## B. Universal Property of $M_{1} \otimes_{R} M_{2}$ (Module Version)

For every R-module $M$ and every $R$-bilinear function $f: M_{1} \times M_{2} \rightarrow M$, there exists a unique $R$-map $f^{\prime}: M_{1} \otimes_{R} M_{2} \rightarrow M$ such that the following diagram commutes:


## Proof

Given $M$ and $f$ as above, $M$ is an abelian group and $f$ is $R$-biadditive, so by the Universal Property, there exists a unique homomorphism $f^{\prime}: M_{1} \otimes M_{2} \rightarrow M$ so that the diagram commutes.

Then

$$
\begin{aligned}
f^{\prime}(r(a \otimes b)) & =f^{\prime}((r a) \otimes b) & & \text { [definition of } M_{1} \otimes_{R} M_{2} \text { module structure] } \\
& =f^{\prime} h(r a, b) & & \\
& =f(r a, b) & & \text { [commutative diagram] } \\
& =r f(a, b) & & {[f \text { is bilinear] }} \\
& =r f^{\prime} h(a, b) & & \text { [commutative diagram] } \\
& =r f^{\prime}(a \otimes b) & &
\end{aligned}
$$

Similarly, for the 2nd component.

## C. Uniqueness

Let $X$ be an $R$-module with the property:

There exists an $R$-bilinear function $k: M_{1} \times M_{2} \rightarrow X$ such that:

For every $R$-module $M$ and every $R$-bilinear function $f: M_{1} \times M_{2} \rightarrow M$, there exists a unique $R$-map $f^{\prime}: X \rightarrow M$.

Then $X \cong M_{1} \otimes_{R} M_{2} \quad$ (as $R$-modules).
Proof
Similar to before; Exercise

### 3.2 Ring Tensoring

## A. Basic Facts

1. $R \otimes_{R} M \cong M \quad$ via $\quad r \otimes a \stackrel{\Phi}{\mapsto} r a \quad$ on generators

## Proof

Define $\quad \varphi: R \times M \rightarrow M \quad$ by $\quad \varphi(r, a)=r a$.

Then $\varphi$ is $R$-bilinear, so by the Universal Property (Module Version), $\varphi$ extends to an $R$-map $\Phi: R \otimes_{R} M \rightarrow M$ such that $\Phi(r \otimes a)=r a$.

Define $\quad \Psi: M \rightarrow R \otimes_{R} M \quad$ by $\quad a \mapsto 1 \otimes a$

Then $\Psi$ is an $R$-map.

Furthermore, $\quad \Psi \Phi(r \otimes a)=\Psi(r a)=1 \otimes(r a)=r \otimes a$

Then $\quad \Psi \Phi=i d_{R \otimes_{R} M}$.

Similarly, $\quad \Phi \Psi=i d_{M}, \quad$ so $\Phi$ is an isomorphism with inverse $\Psi$.
2. $M \otimes_{R} R \cong M$

## Proof

$a \otimes r \mapsto a r \quad$ defines an isomorphism as in \#1 with inverse $\quad a \mapsto a \otimes 1$

## B. Base Change

Let $M$ be an $R$-module
Let $S$ be an $R$-algebra (i.e. $S$ is an $R$-module and $S$ is a ring)
Then $S \otimes_{R} M$ is an $S$-module.

## Proof

Since $S$ is an $R$-module, $\quad S \otimes_{R} M$ is an abelian group.
Then $\forall s \in S$, define $\quad s(a \otimes b)=(s a) \otimes b \quad$ on generators, to make $S \otimes_{R} M$ an $S$-module.

## C. Examples

1. $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}=\mathbb{Q}$ and $(\mathbb{Z} / p \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}=(\mathbb{Z} / p \mathbb{Z})$ ( $p$ a prime)

## Proof

By Section B.
2. $(\mathbb{Z} / p \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}=0 \quad$ ( $p$ a prime)

## Proof

Let $\quad a \otimes b \quad$ be a generator in $\quad(\mathbb{Z} / p \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q}$.
Then $\quad a \otimes b=(p a) \otimes \frac{b}{p}=\overline{0} \otimes \frac{b}{p}=0$.

$$
(\mathbb{Q} / \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})=0
$$

## Proof

Let $\quad \bar{a} \otimes \bar{b} \quad$ be a generator in $\quad(\mathbb{Q} / \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})$.

Then for some $s \neq 0, \quad \bar{a}=\frac{r}{s}+\mathbb{Z}$.

Then

$$
\begin{aligned}
\bar{a} \otimes \bar{b} & =\left(\frac{r}{s}+\mathbb{Z}\right) \otimes s\left(\frac{1}{s} \bar{b}\right) \\
& =s\left(\frac{r}{s}+\mathbb{Z}\right) \otimes\left(\frac{1}{s} \bar{b}\right) \\
& =(r+\mathbb{Z}) \otimes\left(\frac{1}{s} \bar{b}\right) \\
& =\overline{0} \otimes\left(\frac{1}{s} \bar{b}\right) \\
& =0
\end{aligned}
$$

4. If $V$ is an $\mathbb{R}$-vector space, then $V \otimes_{R} \mathbb{C} \quad$ is a $\mathbb{C}$-vector space.

## Proof

By Section B

### 3.3 Isomorphism Theorems

## A. Commutativity

$M_{1} \otimes_{R} M_{2} \cong M_{2} \otimes_{R} M_{1} \quad$ via $\quad a \otimes b \stackrel{\Phi_{C}}{\mapsto} b \otimes a \quad$ on generators

## Proof

Let $\quad f: M_{1} \times M_{2} \rightarrow M_{2} \otimes_{R} M_{1}, \quad$ be defined by $\quad f(a, b)=b \otimes a$.

Since $f$ is $R$-bilinear, by the Universal Property (Module Version),
it extends to a unique $R$-map $\quad \Phi_{C}: M_{1} \otimes_{R} M_{2} \rightarrow M_{2} \otimes M_{1} \quad$ with $\quad a \otimes b \mapsto b \otimes a$.

We similarly get an $R$-map $\quad \Psi_{C}: M_{2} \otimes_{R} M_{1} \rightarrow M_{1} \otimes M_{2} \quad$ with $\quad b \otimes a \mapsto a \otimes b$.

Then $\Phi_{C}$ and $\Psi_{C}$ are inverses, so $\Phi_{C}$ is an isomorphism.

## B. Associativity

$\left(M_{1} \otimes_{R} M_{2}\right) \otimes_{R} M_{3} \cong M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right) \quad$ via $\quad(a \otimes b) \otimes c \stackrel{\Phi_{A}}{\mapsto} a \otimes(b \otimes c) \quad$ on generators

## Proof

$\forall c \in M_{3}$, define $\quad l_{c}: M_{1} \times M_{2} \rightarrow M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right) \quad$ by $\quad(a, b) \mapsto a \otimes(b \otimes c)$

Then $\ell_{c}$ is $R$-bilinear, so by the Universal Property (Module Version),
it extends to a unique $R$-map $\quad \ell_{c}^{\prime}: M_{1} \otimes_{R} M_{2} \rightarrow M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right)$
where $\quad a \otimes b \quad \mapsto \quad a \otimes(b \otimes c)$

Define $\quad f:\left(M_{1} \otimes_{R} M_{2}\right) \times M_{3} \rightarrow M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right) \quad$ by $\quad f(\alpha, c)=\ell_{c}^{\prime}(\alpha)$.

Since $\ell_{c}^{\prime}$ is an $R$-map, $\forall c \in C, \quad f$ is $R$-bilinear.

Thus, by the Universal Property (Module Version),
$f$ extends to a unique $R$-map $\quad \Phi_{A}:\left(M_{1} \otimes_{R} M_{2}\right) \otimes_{R} M_{3} \rightarrow M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right)$
where
$(a \otimes b) \otimes c \quad \mapsto \quad a \otimes(b \otimes c)$

The inverse is constructed similarly.

### 3.4 The Multi-Tensor Product

## A. $\quad R k$-Multilinear Functions

Let $\quad M_{1}, \ldots, M_{k}, M \quad$ be $R$-modules.

Then $\quad f: M_{1} \times \cdots \times M_{k} \rightarrow M \quad$ is called an $\quad R k$-multilinear function $\quad$ if the following holds:

1. $f\left(a_{1}, \ldots, a_{i}+a_{i}^{\prime}, \ldots, a_{k}\right)=f\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)+f\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{k}\right)$
2. $f\left(a_{1}, \ldots, r a_{i}, \ldots, a_{k}\right)=r f\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)$

$$
\forall 1 \leq i \leq k, \quad \forall a_{i}, a_{i}^{\prime} \in M_{i}, \quad \forall r \in R
$$

## B. The $k$-Multi-Tensor Product

Given $R$-modules $\quad M_{1}, \ldots, M_{k}, M, \quad$ we define

$$
M_{1} \otimes M_{2} \otimes \cdots \otimes M_{k} \quad=\quad F_{R}<M_{1} \times \cdots \times M_{k}>/
$$

where $V$ is the $R$-submodule of $\quad F_{R}<M_{1} \times \cdots \times M_{k}>\quad$ generated by the elements:

1. $\left(a_{1}, \ldots, a_{i}+a_{i}^{\prime}, \ldots, a_{k}\right)-\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)-\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{k}\right)$
2. $\left(a_{1}, \ldots, r a_{i}, \ldots, a_{k}\right)-r f\left(a_{1}, \ldots, a_{i}, \ldots, a_{k}\right)$

$$
\forall 1 \leq i \leq k, \quad \forall a_{i}, a_{i}^{\prime} \in M_{i}, \quad \forall r \in R
$$

Definition: Let $h^{\prime}: M_{1} \times \cdots \times M_{k} \rightarrow M_{1} \otimes \cdots \otimes M_{k} \quad$ be the canonical map where $\quad\left(a_{1}, \ldots, a_{k}\right) \quad \mapsto\left(a_{1}, \ldots, a_{k}\right)+V$

## C. Universal Property of the $k$-Multi-Tensor Product

For every R-module $M$ and every $R k$-multilinear function $\quad f: M_{1} \times \cdots \times M_{k} \rightarrow M, \quad$ there exists a unique $R$-map $\quad f^{\prime}: M_{1} \otimes \cdots \otimes M_{k} \rightarrow M \quad$ such that the following diagram commutes:


## Proof

Similar to before (Exercise)

## D. Uniqueness

Let $X$ be an $R$-module with the property:

There exists an $R k$-multilinear function $\quad k: M_{1} \times \cdots \times M_{k} \rightarrow X \quad$ such that:

For every $R$-module $M$ and every $R k$-multilinear function $\quad f: M_{1} \times \cdots \times M_{k} \rightarrow M$, there exists a unique $R$-map $\quad f^{\prime}: X \rightarrow M$.

Then $\quad X \cong M_{1} \otimes \cdots \otimes M_{k}$

## Proof

Similar to before (Exercise)

## E. Comments

1. For $\quad M_{1}, M_{2} \quad R$-modules, $\quad M_{1} \otimes M_{2} \cong M_{1} \otimes_{R} M_{2}$

## Proof

Both satisfy the Universal Property of the $R$ 2-Multi-Tensor Product. Do a uniqueness argument.
2. In view of \#1, we write $a \otimes b$ for the generators in both (isomorphic) modules, as an "abuse of notation".
3. For $\quad M_{1}, M_{2}, M_{3} \quad R$-modules,

$$
M_{1} \otimes M_{2} \otimes M_{3} \cong\left(M_{1} \otimes_{R} M_{2}\right) \otimes_{R} M_{3} \cong M_{1} \otimes_{R}\left(M_{2} \otimes_{R} M_{3}\right)
$$

4. Similar results as above hold for $k R$-modules $\quad M_{1}, \ldots, M_{k}$.
5. Notation: $a_{1} \otimes \cdots \otimes a_{k}=\left(a_{1}, \ldots, a_{k}\right)+V$
6. All of these $k$-multitensor products in this Chapter can be defined appropriately in general (noncommutative) rings using bimodules
i.e. $\quad\left(A_{R}\right) \otimes_{R}\left({ }_{R} B_{S}\right) \otimes_{S}\left({ }_{S} C\right) \quad$ etc.
