MORE ON THE TENSOR PRODUCT

Steven Sy

October 18, 2007

3.1 Commutative Rings

A. Introduction

Let R be a **commutative** ring (with 1).

Let M_1 and M_2 be R-modules.

Then the abelian group $M_1 \otimes_R M_2$ is an *R*-module under scalar multiplication defined by $r(a \otimes b) = (ra) \otimes b$.

Definition: Let M_1 , M_2 , M be R-modules.

Then $f: M_1 \times M_2 \to M$ is called an *R*-bilinear function if f satisfies the following properties:

1. f is R-biadditive

2.
$$r_{\mathbf{f}}(a,b) = f(ra,b) = f(a,rb)$$
 $\forall r \in R, a \in M_1, b \in M_2$

B. Universal Property of $M_1 \otimes_R M_2$ (Module Version)

For every R-module M and every R-bilinear function $f: M_1 \times M_2 \to M$, there exists a unique R-map $f': M_1 \otimes_R M_2 \to M$ such that the following diagram commutes:

Proof

Given M and f as above, M is an abelian group and f is R-biadditive, so by the Universal Property, there exists a unique **homomorphism** $f': M_1 \otimes M_2 \to M$ so that the diagram commutes.

Then

 $f'(r(a \otimes b)) = f'((ra) \otimes b)$ [definition of $M_1 \otimes_R M_2$ module structure] = f'(ra, b) [commutative diagram] = rf(a, b) [f is bilinear] = rf'(ra, b) [commutative diagram] $= rf'(a \otimes b)$ [commutative diagram]

Similarly, for the 2nd component.

C. Uniqueness

Let X be an R-module with the property:

There exists an *R*-bilinear function &: $M_1 \times M_2 \to X$ such that:

For every *R*-module *M* and every *R*-bilinear function $f : M_1 \times M_2 \to M$, there exists a unique *R*-map $f' : X \to M$.

Then $X \cong M_1 \otimes_R M_2$ (as *R*-modules).

Proof

Similar to before; Exercise

3.2 Ring Tensoring

A. Basic Facts

1. $R \otimes_R M \cong M$ via $r \otimes a \stackrel{\Phi}{\mapsto} ra$ on generators

Proof

 $\label{eq:define} \text{Define} \quad \varphi: R \times M \to M \quad \text{by} \quad \varphi(r,a) = ra.$

Then φ is *R*-bilinear, so by the Universal Property (Module Version), φ extends to an *R*-map $\Phi : R \otimes_R M \to M$ such that $\Phi(r \otimes a) = ra$.

Define $\Psi: M \to R \otimes_R M$ by $a \mapsto 1 \otimes a$

Then Ψ is an *R*-map.

Furthermore, $\Psi \Phi(r \otimes a) = \Psi(ra) = 1 \otimes (ra) = r \otimes a$

Then $\Psi \Phi = id_{R \otimes_R M}$.

Similarly, $\Phi \Psi = id_M$, so Φ is an isomorphism with inverse Ψ .

2.
$$M \otimes_R R \cong M$$

Proof

 $a \otimes r \mapsto ar$ defines an isomorphism as in #1 with inverse $a \mapsto a \otimes 1$

B. Base Change

Let M be an R-module Let S be an R-algebra (i.e. S is an R-module and S is a ring) Then $S \otimes_R M$ is an S-module.

Proof

Since S is an R-module, $S \otimes_R M$ is an abelian group. Then $\forall s \in S$, define $s(a \otimes b) = (sa) \otimes b$ on generators, to make $S \otimes_R M$ an S-module.

C. Examples

1.
$$\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z} = \mathbb{Q}$$
 and $\binom{\mathbb{Z}/}{p\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Z} = \binom{\mathbb{Z}/}{p\mathbb{Z}}$ (*p* a prime)

Proof

By Section B.

2.
$$\left(\begin{array}{c} \mathbb{Z}/\\ /p\mathbb{Z} \end{array} \right) \otimes_{\mathbb{Z}} \mathbb{Q} = 0$$
 (*p* a prime)

Proof

Let
$$a \otimes b$$
 be a generator in $\binom{\mathbb{Z}}{p\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$.
Then $a \otimes b = (pa) \otimes \frac{b}{p} = \bar{0} \otimes \frac{b}{p} = 0$.

3.
$$\left(\begin{array}{c} \mathbb{Q}/\\ \mathbb{Z} \end{array} \right) \otimes_{\mathbb{Z}} \left(\begin{array}{c} \mathbb{Q}/\\ \mathbb{Z} \end{array} \right) = 0$$

Proof

Let $\bar{a} \otimes \bar{b}$ be a generator in $\begin{pmatrix} \mathbb{O}/\\ /\mathbb{Z} \end{pmatrix} \otimes_{\mathbb{Z}} \begin{pmatrix} \mathbb{O}/\\ /\mathbb{Z} \end{pmatrix}$.

Then for some $s \neq 0$, $\bar{a} = \frac{r}{s} + \mathbb{Z}$.

Then

$$\bar{a} \otimes \bar{b} = \left(\frac{r}{s} + \mathbb{Z}\right) \otimes s\left(\frac{1}{s}\bar{b}\right)$$
$$= s\left(\frac{r}{s} + \mathbb{Z}\right) \otimes \left(\frac{1}{s}\bar{b}\right)$$
$$= (r + \mathbb{Z}) \otimes \left(\frac{1}{s}\bar{b}\right)$$
$$= \bar{0} \otimes \left(\frac{1}{s}\bar{b}\right)$$
$$= 0$$

4. If V is an \mathbb{R} -vector space, then $V \otimes_R \mathbb{C}$ is a \mathbb{C} -vector space.

Proof

By Section B

3.3 Isomorphism Theorems

A. Commutativity

 $M_1 \otimes_R M_2 \cong M_2 \otimes_R M_1 \quad \text{via} \quad a \otimes b \stackrel{\Phi_C}{\mapsto} b \otimes a \quad \text{on generators}$

Proof

Let $f: M_1 \times M_2 \to M_2 \otimes_R M_1$, be defined by $f(a,b) = b \otimes a$.

Since f is *R*-bilinear, by the Universal Property (Module Version), it extends to a unique *R*-map $\Phi_C: M_1 \otimes_R M_2 \to M_2 \otimes M_1$ with $a \otimes b \mapsto b \otimes a$.

We similarly get an R-map $\Psi_C: M_2 \otimes_R M_1 \to M_1 \otimes M_2$ with $b \otimes a \mapsto a \otimes b$.

Then Φ_C and Ψ_C are inverses, so Φ_C is an isomorphism.

B. Associativity

$$(M_1 \otimes_R M_2) \otimes_R M_3 \cong M_1 \otimes_R (M_2 \otimes_R M_3) \quad \text{via} \quad (a \otimes b) \otimes c \stackrel{\Phi_A}{\mapsto} a \otimes (b \otimes c) \quad \text{on generators}$$

Proof

 $\forall c \in M_3$, define $\ell_c : M_1 \times M_2 \rightarrow M_1 \otimes_R (M_2 \otimes_R M_3)$ by $(a, b) \mapsto a \otimes (b \otimes c)$

Then ℓ_c is *R*-bilinear, so by the Universal Property (Module Version), it extends to a unique *R*-map $\ell_c': M_1 \otimes_R M_2 \rightarrow M_1 \otimes_R (M_2 \otimes_R M_3)$ where $a \otimes b \mapsto a \otimes (b \otimes c)$

Define $f: (M_1 \otimes_R M_2) \times M_3 \rightarrow M_1 \otimes_R (M_2 \otimes_R M_3)$ by $f(\alpha, c) = \ell_c'(\alpha)$.

Since ℓ_c' is an *R*-map, $\forall c \in C$, f is *R*-bilinear.

Thus, by the Universal Property (Module Version), $\oint extends to a unique R-map \qquad \Phi_A : (M_1 \otimes_R M_2) \otimes_R M_3 \rightarrow M_1 \otimes_R (M_2 \otimes_R M_3)$ where $(a \otimes b) \otimes c \qquad \mapsto \qquad a \otimes (b \otimes c)$

The inverse is constructed similarly.

3.4 The Multi-Tensor Product

A. *R k*-Multilinear Functions

Let M_1, \ldots, M_k, M be *R*-modules.

Then $f: M_1 \times \cdots \times M_k \to M$ is called an *R* k-multilinear function if the following holds:

- 1. $f(a_1, \ldots, a_i + a'_i, \ldots, a_k) = f(a_1, \ldots, a_i, \ldots, a_k) + f(a_1, \ldots, a'_i, \ldots, a_k)$
- 2. $f(a_1,\ldots,ra_i,\ldots,a_k) = r f(a_1,\ldots,a_i,\ldots,a_k)$

$$\forall 1 \le i \le k, \quad \forall a_i, a'_i \in M_i, \quad \forall r \in R$$

B. The *k*-Multi-Tensor Product

Given *R*-modules M_1, \ldots, M_k, M , we define

where V is the R-submodule of $F_R < M_1 \times \cdots \times M_k >$ generated by the elements:

- 1. $(a_1, \ldots, a_i + a'_i, \ldots, a_k) (a_1, \ldots, a_i, \ldots, a_k) (a_1, \ldots, a'_i, \ldots, a_k)$
- 2. $(a_1,\ldots,ra_i,\ldots,a_k)-rf(a_1,\ldots,a_i,\ldots,a_k)$
 - $\forall 1 \leq i \leq k, \quad \forall a_i, a'_i \in M_i, \quad \forall r \in R$
- **Definition:** Let $\kappa': M_1 \times \cdots \times M_k \to M_1 \otimes \cdots \otimes M_k$ be the canonical map where $(a_1, \ldots, a_k) \mapsto (a_1, \ldots, a_k) + V$

C. Universal Property of the k-Multi-Tensor Product

For every R-module M and every R k-multilinear function $f: M_1 \times \cdots \times M_k \to M$, there exists a unique R-map $f': M_1 \otimes \cdots \otimes M_k \to M$ such that the following diagram commutes:

Proof

Similar to before (Exercise)

D. Uniqueness

Let X be an R-module with the property:

There exists an R k-multilinear function $\&: M_1 \times \cdots \times M_k \to X$ such that:

For every *R*-module *M* and every *R k*-multilinear function $f: M_1 \times \cdots \times M_k \to M$, there exists a unique *R*-map $f': X \to M$.

Then $X \cong M_1 \otimes \cdots \otimes M_k$

Proof

Similar to before (Exercise)

E. Comments

1. For M_1, M_2 *R*-modules, $M_1 \otimes M_2 \cong M_1 \otimes_R M_2$

Proof

Both satisfy the Universal Property of the $R\,$ 2-Multi-Tensor Product. Do a uniqueness argument.

- 2. In view of #1, we write $a \otimes b$ for the generators in both (isomorphic) modules, as an "abuse of notation".
- 3. For M_1, M_2, M_3 R-modules,

 $M_1 \otimes M_2 \otimes M_3 \cong (M_1 \otimes_R M_2) \otimes_R M_3 \cong M_1 \otimes_R (M_2 \otimes_R M_3)$

- 4. Similar results as above hold for k R-modules M_1, \ldots, M_k .
- 5. Notation: $a_1 \otimes \cdots \otimes a_k = (a_1, \ldots, a_k) + V$
- 6. All of these *k*-multitensor products in this Chapter can be defined appropriately in general (**noncommutative**) rings using **bimodules**
 - i.e. $(A_R) \otimes_R (_RB_S) \otimes_S (_SC)$ etc.