INTRODUCTION TO THE TENSOR PRODUCT

Steven Sy

September 13, 2007

2.1 Preliminaries

A. Formal Linear Combinations: Intuition

Given a set X, we wish to give meaning to " $3x_1 + 2x_2$ " and make the collection of such objects an R-module.

B. Construction

Let X be a set and let R be a ring (with 1). To each $x \in X$, define $\alpha : X \to R$ by $\alpha(y) = \begin{cases} 1; & \text{if } y = x \\ 0; & \text{if } y \neq x \end{cases}$

(Thus x is a "characteristic function" with value 1 at x.)

Definition: For all $x_j \in X$, define $1 \cdot x_j = x_j$.

For all $x_i \in X$ and $c_i \in R$, if the sum $\sum_{i=1}^n c_i x_i$ is not already x_j , define it to be $\sum_{i=1}^n c_i \alpha_i$.

 $\sum_{i=1}^{n} c_i x_i$ is called a **formal linear combination** of elements of X.

Definition: Let $F_R < X >$ be the set of all formal linear combinations of elements of X.

Then under pointwise addition of functions, and scalar multiplication by elements of R,

 $F_R < X >$ is an R-module.

C. Comments

- 1. $F_R < X >$ is a free R-module with basis X.
- 2. $X \subseteq F_R < X >$
- 3. For $R = \mathbb{Z}$, we call $F_{\mathbb{Z}} < X >$ the free abelian group on X.
- 4. By the construction, given any set X, there exists a free R-module/abelian group having X as a basis.

D. Notation

- 1. If A is a left R-module, we write ${}_{R}A$.
- 2. If A is a right R-module, we write A_R .

R-biadditive functions Ε.

Definition: f is called an R-biadditive function if

$$f: (A_R) \times (_RB) \to G$$

where G is an abelian group.

Furthermore f must satisfy the following properties:

1.
$$\xi(a_1 + a_2, b) = \xi(a_1, b) + \xi(a_2, b)$$
 $\forall a_1, a_2 \in A; b \in B$

$$\forall a_1, a_2 \in A; b \in E$$

2.
$$f(a, b_1 + b_2) = f(a, b_1) + f(a, b_2)$$
 $\forall a \in A; b_1, b_2 \in B$

$$\forall a \in A; \ b_1, b_2 \in B$$

3.
$$\xi(ar,b) = \xi(a,rb)$$

3.
$$f(ar,b) = f(a,rb)$$
 $\forall a \in A, b \in B, r \in R$

F. Tensor Product Intuition

We w	ish t	o construct a	special	type o	of "produ	ct" that	"behaves	biadditively	·,
------	-------	---------------	---------	--------	-----------	----------	----------	--------------	----

Now formalize . . .

2.2 The Tensor Product

A. Definition

Given A_R and $_RB$, we define $A\otimes_RB$:

$$A \otimes_R B = F_{\mathbb{Z}} < A \times B > / U$$

where U is the subgroup of $F_{\mathbb{Z}} {<} A \times B {>}$ which is generated by the elements:

- 1. $(a_1 + a_2, b) (a_1, b) (a_2, b)$
- 2. $(a, b_1 + b_2) (a, b_1) (a, b_2)$
- 3. (ar, b) (a, rb)

where $a, a_1, a_2 \in A$; $b, b_1, b_2 \in B$; $r \in R$.

B. Notation and Comments

- 1. $a \otimes b = (a, b) + U \in A \otimes_R B$
- 2. Since elements of $F_{\mathbb{Z}} < A \times B > \text{look like } \sum_{i=1}^{n} c_i(a_i, b_i) \text{ for } c_i \in \mathbb{Z}, \text{ elements of } A \otimes_R B \text{ look like }$

$$\sum_{i=1}^n c_i(a_i,b_i) + U = \sum_{i=1}^n c_i(a_i \otimes b_i)$$

- 3. Since we may choose different representatives from a coset, the representation $\sum_{i=1}^{n} c_i(a_i \otimes b_i)$ for a typical element in $A \otimes_R B$ is **not** unique.
- 4. The **zero element** in $A \otimes_R B$, is $0 \otimes 0 = (0,0) + U$, which is sometimes simply written as 0.

5. Properties:

a.
$$(a_1 + a_2) \otimes b = a_1 \otimes b + a_2 \otimes b$$

b.
$$a \otimes (b_1 + b_2) = a \otimes b_1 + a \otimes b_2$$

c.
$$(ar) \otimes b = a \otimes (rb)$$

(These are all true by definition of U.)

6. Additional Properties:

a.
$$a \otimes 0 = 0$$

Proof

$$a \otimes 0 + a \otimes 0 \stackrel{\text{Prop (b)}}{=} a \otimes 0$$

Thus,
$$a \otimes 0 = 0$$
.

b.
$$0 \otimes b = 0$$

- 7. Since elements of $A \otimes_R B$ are cosets, when you define a function with domain $A \otimes_R B$ you must make sure that it is well-defined. By definition of U, this amounts to showing that the proposed function is R-biadditive on the underlying Cartesian product.
- 8. **Warning:** If $A \subseteq B$, it is **not** true in general that $A \otimes_R C \subseteq B \otimes_R C!$ **Reason:** something involving "flatness" (See later)
- 9. Let $k: A \times B \to A \otimes_R B$ be the canonical map defined by

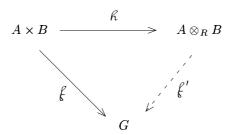
$$(a_i, b_i) \stackrel{\mathcal{K}}{\mapsto} (a_i, b_i) + U = a_i \otimes b_i$$

Note that \mathcal{K} is R-biadditive.

10. The tensor product completely characterizes R-biadditive maps. We will see this in the **Universal Property**.

C. Universal Property of $A \otimes_R B$

For every abelian group G and every R-biadditive function $f: A \times B \to G$, there exists a unique homomorphism $f': A \otimes_R B \to G$ such that the following diagram commutes:



Proof

Given an abelian group G and R-biadditive function $f: A \times B \to G$, there exists a unique homomorphism $\varphi: F_{\mathbb{Z}} < A \times B > \to G$ extending f, namely

$$arphi\left(\sum_{i=1}^n c_i(a_i,b_i)
ight) = \sum_{i=1}^n c_i f(a_i,b_i)$$

Let
$$\eta: F_{\mathbb{Z}} {<} A \times B {>} \longrightarrow \begin{bmatrix} F_{\mathbb{Z}} {<} A \times B {>} / \\ U \end{bmatrix}$$
 be the canonical map.

Then we have the following diagram:

$$F_{\mathbb{Z}} < A \times B > \frac{\varphi}{} > G$$

$$\eta \qquad \qquad \downarrow$$

$$A \otimes_R B = \frac{F_{\mathbb{Z}} < A \times B > /}{/U}$$

Since f is R-biadditive, $U\subseteq\ker\varphi$, so φ factors uniquely through η to give a homomorphism $f':A\otimes_R B\to G$ defined by

$$\sum_{i=1}^{n} c_{i}(a_{i} \otimes b_{i}) \stackrel{f}{\mapsto} c_{i} f(a_{i}, b_{i})$$

Then
$$f'\mathcal{R}(a,b) = f'(a\otimes b) = f(a,b)$$
.

Thus $\xi' \mathcal{K} = \xi$, and the diagram commutes.

D. Uniqueness

Let X be an abelian group with the property:

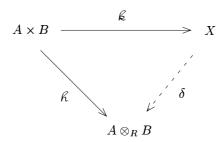
There exists an R-biadditive function $\mathcal{E}: A \times B \to X$ such that:

For every abelian group G and every R-biadditive function $f: A \times B \to G$, there exists a unique homomorphism $f': X \to G$.

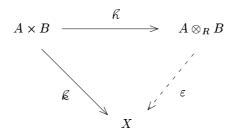
Then $X \cong A \otimes_R B$.

Proof

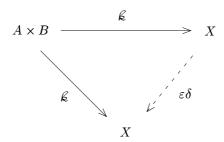
By the assumed property for X, there exists a unique homomorphism $\delta: X \to A \otimes_R B$ so that the diagram commutes:



By the assumed property for $A \otimes_R B$, there exists a unique homomorphism $\varepsilon : A \otimes_R B \to X$ so that the diagram commutes:



Then we have the commutative diagram:



Since $(\varepsilon\delta)\mathcal{E} = \mathcal{E}$ and $\mathrm{id}_X \circ \mathcal{E} = \mathcal{E}$, by uniqueness of the homomorphism in the Universal Property, $\varepsilon\delta = \mathrm{id}_X$.

Similarly, $\delta \varepsilon = id_{A \otimes_R B}$.

Thus δ is an isomorphism, and $X \cong A \otimes_R B$ via δ .