9.1 Distance Formula and Circles

A. Distance Formula

We seek a formula for the distance between two points:

By the Pythagorean Theorem, $\quad d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$

Since distance is positive, we have:

Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

B. Example

Find the distance between $(-1,2)$ and $(3,-4)$

Solution

Use the distance formula:

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(3-(-1))^{2}+(-4-2)^{2}} \\
& =\sqrt{(4)^{2}+(-6)^{2}} \\
& =\sqrt{16+36} \\
& =\sqrt{52}
\end{aligned}
$$

Ans $2 \sqrt{13}$

C. Circles

A circle is the set of points a fixed distance r from a center (a, b) :

By the distance formula, $\quad r=\sqrt{(x-a)^{2}+(y-b)^{2}}$

Eliminating the radical, we get:

$$
\text { Equation of Circle in Standard Form: } \quad(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Note: r is called the radius of the circle.

D. Examples

Example 1: Find the equation of a circle with center $(2,-1)$ and radius 4.

Solution

The equation of a circle in standard form: $\quad(x-a)^{2}+(y-b)^{2}=r^{2}$

Thus, we have: $(x-2)^{2}+(y+1)^{2}=4^{2}$

Ans $(x-2)^{2}+(y+1)^{2}=16$

Example 2: Given a circle $x^{2}+(y-3)^{2}=5$, find the center and radius.

Solution

Since the equation of a circle in standard form is $(x-a)^{2}+(y-b)^{2}=r^{2}$, we have

Ans | center: | $(0,3)$ |
| :--- | :--- |
| radius: | $\sqrt{5}$ |

E. Putting the Equation of a Circle in Standard Form

Sometimes the equation of a circle is not in standard form.
To put it in standard form, we complete the square in both x and y.
In standard form, it is easy to identify the center and radius of the circle.

Example 1: Put the equation of the circle $x^{2}+y^{2}-6 x+2 y=15$ into standard form.

Solution

$$
\begin{aligned}
& x^{2}+y^{2}-6 x+2 y=15 \\
& \left(x^{2}-6 x\right)+\left(y^{2}+2 y\right)=15 \\
& {\left[\left(x^{2}-6 x+9\right)-9\right]+\left[y^{2}+2 y+1\right]-1=15} \\
& (x-3)^{2}-9+(y+1)^{2}-1=15
\end{aligned}
$$

Ans $\quad(x-3)^{2}+(y+1)^{2}=25$

Example 2: Put the equation of the circle $2 x^{2}+2 y^{2}-10 x-12 y=7$ into standard form.

Solution

$$
\begin{aligned}
& 2 x^{2}+2 y^{2}-10 x-12 y=7 \\
& \left(2 x^{2}-10 x\right)+\left(2 y^{2}-12 y\right)=7 \\
& 2\left(x^{2}-5 x\right)+2\left(y^{2}-6 y\right)=7 \\
& {\left[2\left(x^{2}-5 x+\frac{25}{4}\right)-\frac{25}{2}\right]+\left[2\left(y^{2}-6 y+9\right)-18\right]=7}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[2\left(x-\frac{5}{2}\right)^{2}-\frac{25}{2}\right]+\left[2(y-3)^{2}-18\right]=7} \\
& 2\left(x-\frac{5}{2}\right)^{2}+2(y-3)^{2}-\frac{25}{2}-\frac{36}{2}=7 \\
& 2\left(x-\frac{5}{2}\right)^{2}+2(y-3)^{2}-\frac{61}{2}=7 \\
& 2\left(x-\frac{5}{2}\right)^{2}+2(y-3)^{2}=7+\frac{61}{2} \\
& 2\left(x-\frac{5}{2}\right)^{2}+2(y-3)^{2}=\frac{14}{2}+\frac{61}{2} \\
& 2\left(x-\frac{5}{2}\right)^{2}+2(y-3)^{2}=\frac{75}{2} \\
& \text { Ans } \\
& \left(x-\frac{5}{2}\right)^{2}+(y-3)^{2}=\frac{75}{4}
\end{aligned}
$$

F. Graphing Circles

To graph a circle:

1. Put the equation in standard form.
2. Find the center and radius.
3. Find the x and y intercepts.
4. Plot the x and y intercepts.

Going any direction from the center by a radius amount reaches the circle.
5. Connect the dots.

Example: Find the center, radius, x and y intercepts of the circle, where $x^{2}+y^{2}-2 x+8 y=-5$. Then graph the circle.

Solution

First, put the circle in standard form:

$$
\begin{aligned}
& x^{2}+y^{2}-2 x+8 y=-5 \\
& \left(x^{2}-2 x\right)+\left(y^{2}+8 y\right)=-5 \\
& \left(x^{2}-2 x+1\right)-1+\left(y^{2}+8 y+16\right)-16=-5 \\
& (x-1)^{2}+(y+4)^{2}-17=-5 \\
& (x-1)^{2}+(y+4)^{2}=12
\end{aligned}
$$

center: $(1,-4)$
radius: $\sqrt{12}=2 \sqrt{3}$
x-intercepts: set $y=0$:

$$
\begin{aligned}
(x-1)^{2}+(0+4)^{2} & =12 \\
(x-1)^{2}+16 & =12 \\
(x-1)^{2} & =-4 \\
x-1 & = \pm \sqrt{-4}
\end{aligned}
$$

Thus there are no x-intercepts.
y-intercepts: set $x=0$:

$$
\begin{aligned}
(0-1)^{2}+(y+4)^{2} & =12 \\
1+(y+4)^{2} & =12 \\
(y+4)^{2} & =11 \\
y+4 & = \pm \sqrt{11} \\
y & =-4 \pm \sqrt{11}
\end{aligned}
$$

Thus the y-intercepts are $-4 \pm \sqrt{11}$.

Graph:

