5.6 Special Factoring Formulas

A. Perfect Square Factoring

1. Perfect Square Factoring Formulas: $\quad a^{2}+2 a b+b^{2}=(a+b)^{2}$ and $a^{2}-2 a b+b^{2}=(a-b)^{2}$
2. To use: if the first and last terms of a trinomial are squares, try writing a perfect square; then use the square formula to see if you are correct.
3. Examples:

Example 1: Factor $4 x^{2}+12 x+9$.

Solution

Since $4 x^{2}=(2 x)^{2}$ and $9=3^{2}$, we GUESS $(2 x+3)^{2}$

Test: using the square formula, $(2 x+3)^{2}=4 x^{2}+12 x+9 \sqrt{ }$

Ans $(2 x+3)^{2}$

Example 2: Factor $9 x^{2}-24 x y+16 y^{2}$.

Solution

Since $9 x^{2}=(3 x)^{2}$ and $16 y^{2}=(4 y)^{2}$, we GUESS $(3 x-4 y)^{2}$
Test: using the square formula, $(3 x-4 y)^{2}=9 x^{2}-24 x y+16 y^{2} \sqrt{ }$

Ans $(3 x-4 y)^{2}$

Example 3: Factor $4 x^{2}-15 x+9$.

Solution

Since $4 x^{2}=(2 x)^{2}$ and $9=3^{2}$, we GUESS $(2 x-3)^{2}$

Test: using the square formula, $(2 x-3)^{2}=4 x^{2}-12 x+9 \mathrm{X}$

This shortcut fails, so we must do AntiFOIL!

$$
\begin{array}{c|ll}
4 x^{2}-15 x+9 & 36 & \text { TSP: }-,- \\
\hline 4 x^{2}-x-14 x+9 & 14 & \\
4 x^{2}-2 x-13 x+9 & 26 & \\
4 x^{2}-3 x-12 x+9 & 36 \sqrt{ } \\
\\
x(4 x-3)-3(4 x-3)
\end{array}
$$

Ans $(4 x-3)(x-3)$

B. Difference of Squares

1. Formula: $a^{2}-b^{2}=(a+b)(a-b)$
2. Examples:

Example 1: Factor $x^{2}-9$.

Solution

Write $x^{2}-9$ as $x^{2}-3^{2}$

By the formula, we get

Ans $(x+3)(x-3)$

Example 2: Factor $4 x^{2}-49$.

Solution

Write $4 x^{2}-49$ as $(2 x)^{2}-7^{2}$

By the formula, we get

Ans $(2 x+7)(2 x-7)$

Example 3: Factor $16 x^{4}-81 y^{4}$.

Solution

Write $16 x^{4}-81 y^{4}$ as $\left(4 x^{2}\right)^{2}-\left(9 y^{2}\right)^{2}$
By the formula, we get $\left(4 x^{2}+9 y^{2}\right)\left(4 x^{2}-9 y^{2}\right)$
Now $4 x^{2}+9 y^{2}$ is a sum of squares (not factorable),
but we can factor $4 x^{2}-9 y^{2}$ further as a difference of squares again!

Thus $\left(4 x^{2}+9 y^{2}\right)\left(4 x^{2}-9 y^{2}\right)=\left(4 x^{2}+9 y^{2}\right)\left((2 x)^{2}-(3 y)^{2}\right)$

By the difference of squares, we get
Ans $\left(4 x^{2}+9 y^{2}\right)(2 x+3 y)(2 x-3 y)$

C. Difference and Sum of Cubes

1. Formulas

Difference of Cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

Sum of Cubes: $\quad a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
2. Note: The quadratic in the factorization is prime (no need to try to factor it!)
3. Easy way to remember these two formulas:

First factor: just "remove" the cubes

Second factor: pretend to "square" the first factor EXCEPT
rather than doing product times 2 , do product times -1
4. Examples:

Example 1: Factor $x^{3}+27$.

Solution

Write $x^{3}+27$ as $x^{3}+3^{3}$

By the formula, we get

Ans $(x+3)\left(x^{2}-3 x+9\right)$

Example 2: Factor $8 x^{3}-125$.

Solution

$$
\begin{aligned}
& \text { Write } 8 x^{3}-125 \text { as }(2 x)^{3}-(5)^{3} \\
& \text { By the formula, we get }
\end{aligned}
$$

Ans $(2 x-5)\left(4 x^{2}+10 x+25\right)$

D. Closing Comment

As always when factoring, you should first check to see if you can factor out a GCF before trying any other technique. In the last sections, we will put all of our techniques together.

