5.6 Special Factoring Formulas

A. Perfect Square Factoring

1. Perfect Square Factoring Formulas: $a^2 + 2ab + b^2 = (a + b)^2$ and $a^2 - 2ab + b^2 = (a - b)^2$

2. To use: if the first and last terms of a trinomial are squares, try writing a perfect square; then use the square formula to see if you are correct.

3. Examples:

Example 1: Factor $4x^2 + 12x + 9$.

Solution

Since $4x^2 = (2x)^2$ and $9 = 3^2$, we GUESS $(2x + 3)^2$

Test: using the square formula, $(2x + 3)^2 = 4x^2 + 12x + 9\sqrt{2}$

Ans $(2x+3)^2$

Example 2: Factor $9x^2 - 24xy + 16y^2$.

Solution

Since $9x^2 = (3x)^2$ and $16y^2 = (4y)^2$, we GUESS $(3x - 4y)^2$

Test: using the square formula, $(3x - 4y)^2 = 9x^2 - 24xy + 16y^2 \checkmark$

Ans $(3x - 4y)^2$

Example 3: Factor $4x^2 - 15x + 9$.

Solution

Since
$$4x^2 = (2x)^2$$
 and $9 = 3^2$, we GUESS $(2x - 3)^2$

Test: using the square formula, $(2x - 3)^2 = 4x^2 - 12x + 9 X$

This shortcut fails, so we must do AntiFOIL!

$4x^2 - 15x + 9$	36	TSP: -, -
$4x^2 - x - 14x + 9$	14	
$4x^2 - 2x - 13x + 9$	26	
$4x^2 - 3x - 12x + 9$	36	
x(4x-3) - 3(4x-3)		
(4x-3)(x-3)		

B. Difference of Squares

Ans

1. Formula: $a^2 - b^2 = (a + b)(a - b)$

2. Examples:

Example 1: Factor $x^2 - 9$.

Solution

Write
$$x^2 - 9$$
 as $x^2 - 3^2$

By the formula, we get

Ans
$$(x+3)(x-3)$$

Example 2: Factor $4x^2 - 49$.

Solution

Write $4x^2 - 49$ as $(2x)^2 - 7^2$

By the formula, we get

Ans (2x+7)(2x-7)

Example 3: Factor $16x^4 - 81y^4$.

Solution

Write $16x^4 - 81y^4$ as $(4x^2)^2 - (9y^2)^2$

By the formula, we get $(4x^2 + 9y^2)(4x^2 - 9y^2)$

Now $4x^2 + 9y^2$ is a sum of squares (not factorable), but we can factor $4x^2 - 9y^2$ further as a difference of squares again!

Thus
$$(4x^2 + 9y^2)(4x^2 - 9y^2) = (4x^2 + 9y^2)((2x)^2 - (3y)^2)$$

By the difference of squares, we get

Ans $(4x^2 + 9y^2)(2x + 3y)(2x - 3y)$

C. Difference and Sum of Cubes

1. Formulas

Difference of Cubes:
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Sum of Cubes: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

2. Note: The quadratic in the factorization is prime (no need to try to factor it!)

3. Easy way to remember these two formulas:

First factor: just "remove" the cubes

Second factor: pretend to "square" the first factor **EXCEPT**
rather than doing product times 2, do product times
$$-1$$

4. Examples:

Example 1: Factor $x^3 + 27$.

Solution

Write $x^3 + 27$ as $x^3 + 3^3$

By the formula, we get

Ans

 $(x+3)(x^2-3x+9)$

Example 2: Factor $8x^3 - 125$.

Solution

Write $8x^3 - 125$ as $(2x)^3 - (5)^3$

By the formula, we get

Ans $(2x-5)(4x^2+10x+25)$

D. Closing Comment

As always when factoring, you should first check to see if you can factor out a GCF before trying any other technique. In the last sections, we will put all of our techniques together.