CONSTRUCTING A C^{∞} MANIFOLD

- **Step 1** (Set step): Start with a set X.
- **Step 2** (Topological space step): Topologize X by introducing a topology on X.

This makes (X, \mathcal{T}) into a **topological space**.

Step 3 (Topological manifold step): Show that

- 1. (X, \mathcal{T}) is second countable
- 2. (X, \mathcal{T}) is **Hausdorff**
- 3. (X, \mathcal{T}) is locally Euclidean

This makes (X, \mathcal{T}) into a **topological manifold**.

Step 4 (Topological atlas step): Let $\mathcal{A} = \{(U_{\alpha}, V_{\alpha}, \varphi_{\alpha}) : \alpha \in \Lambda\}$ where

- 1. $\forall \alpha \in \Lambda, U_{\alpha} \in \mathcal{T}$ (i.e. U_{α} is an open subset of X)
- 2. $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ is an open cover of X
- 3. $\forall \alpha \in \Lambda$, V_{α} is an open subset of \mathbb{R}^n
- 4. $\forall \alpha \in \Lambda, \varphi_{\alpha} : U_{\alpha} \to V_{\alpha}$ is a homeomorphism

Such an \mathcal{A} is called a **topological atlas**, and such an atlas can be constructed since (X, \mathcal{T}) is locally Euclidean.

Step 5 $(C^{\infty}$ -atlas step): Show that $\forall \alpha, \beta \in \Lambda$, $(U_{\alpha}, V_{\alpha}, \varphi_{\alpha}) \in \mathcal{A}$ and $(U_{\beta}, V_{\beta}, \varphi_{\beta}) \in \mathcal{A}$ are C^{∞} -related:

Thus let
$$\tau_{\alpha\beta} = \varphi_{\alpha}|_{U_{\alpha} \cap U_{\beta}}^{\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})} \circ \left(\varphi_{\beta}|_{U_{\alpha} \cap U_{\beta}}^{\varphi_{\beta}(U_{\alpha} \cap U_{\beta})}\right)^{-1}$$

Then show that $\tau_{\alpha\beta}: \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ is C^{∞} .

This makes A into a C^{∞} -atlas.

Step 6 (C^{∞} -manifold step): Let $M = (X, \mathcal{T}, |\mathcal{A}|)$, where $|\mathcal{A}|$ is the unique maximal atlas containing \mathcal{A} .

Then M is a C^{∞} -manifold.