1.1 Real Numbers

A. Sets

A set is a list of numbers: $\{3, 7, 15, \frac{2}{3}, \pi, -10\}$

We separate the entries with commas, and close off the left and right with $\{ and \}$.

The **empty set** is the set containing nothing: $\{\}$. It is given the symbol \emptyset .

B. Special Sets

- 1. Natural Numbers: $\mathbb{N} = \{1, 2, ...\}$ (these are the counting numbers)
- 2. Whole Numbers: $\mathbb{W} = \{0, 1, 2, ...\}$ (same as \mathbb{N} , but throw in zero)
- 3. Integers: $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$

(same as the whole numbers, but allow negative whole numbers)

4. Rational Numbers: \mathbb{Q}

This contains:

- a. all integers, like -2, 5, or 0
- b. all fractions positive and negative, like $\frac{3}{4}$ and $-\frac{7}{5}$
- c. all decimals that terminate (stop), like .25
- d. all decimals that have a repeating block, like .1845454545....

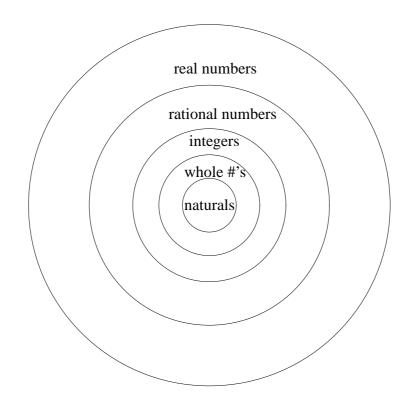
It is a fact that all rational numbers can be turned into fractions: stay tuned

5. Irrational Numbers: $\mathbb{R} \setminus \mathbb{Q}$

This contains only infinite decimals that don't have a repeating block.

Examples:

$$\pi = 3.141592...$$
$$-\sqrt{3} = -1.73205...$$
$$-1.1010010001...$$


It is a fact that all roots that don't come out "cleanly" are irrational.

Thus $\sqrt{5}$, $\sqrt[3]{7}$, $-\sqrt[5]{11}$ are all irrational.

6. Real Numbers: \mathbb{R}

This consists of anything that is either rational or irrational. Hence all numbers (in this course) are real.

C. Picture of Special Sets

Notice that irrational numbers are in a separate group.

D. Practice Problems on Special Sets

Try to decide which sets each number belongs to. A number may belong to only one set, or several; list all possible.

1.	6
2.	$-\frac{3}{4}$
3.	$\sqrt{6}$
4.	0
5.	.89
6.	89121212
7.	.123456789101112

8. $\sqrt{9}$

E. Properties of Real Numbers

1. Commutative: we can add or multiply in any order

$$3+4=4+3$$
 commutative property of addition

 $3 \cdot 4 = 4 \cdot 3$ commutative property of multiplication (note: \cdot means multiply)

2. Associative: In repeated adding or multiplying, we can move parentheses

(2+3)+4=2+(3+4) associative property of addition

 $(5 \cdot 6) \cdot 7 = 5 \cdot (6 \cdot 7)$ associative property of multiplication

Parenthesis mean do this first

3. Identity: Adding zero or multiplying by 1 does nothing

2 + 0 = 2 identity property of addition

 $5 \cdot 1 = 5$ identity property of multiplication

Note: 0 is called the additive identity, and 1 is called the multiplicative identity.

4. Inverse: Two numbers add to zero or multiply to 1

6 + (-6) = 0 inverse property of addition

 $6 \cdot \frac{1}{6}$ inverse property of multiplication

Note: -6 is the additive inverse; $\frac{1}{6}$ is the multiplicative inverse (reciprocal)

5. Distributive: Multiplying a sum

 $3(4+6) = 3 \cdot 4 + 3 \cdot 6$ distributive property of multiplication over addition

F. Practice Problems on Properties

For each mathematical statement below, correct identify the name of the property shown.

1.
$$8 + 0 = 8$$

2. $(5 \cdot 2) \cdot \sqrt{7} = 5 \cdot (2 \cdot \sqrt{7})$
3. $4(\sqrt{3} + \frac{1}{3}) = 4 \cdot \sqrt{3} + 4 \cdot \frac{1}{3}$
4. $3 \cdot \frac{1}{3} = 1$
5. $2.4 + 5 = 5 + 2.4$
6. $7 \cdot 1 = 7$
8. $4 + (-4) = 0$
9. $\frac{2}{5}(6 + \sqrt{2}) = \frac{2}{5} \cdot 6 + \frac{2}{5} \cdot \sqrt{2}$