
T3.8 Trigonometric Functions: Periodicity

A. Introduction

Since ω spits back the same point every time we add 2π , we say that ω is **periodic**.

B. Periodicity

Formally, a function ξ is said to be **periodic** if $\xi(x+p)=\xi(x)$ for some p. The smallest such value of p that makes the function periodic is called the **period**.

C. Periodicity of the Wrapping Function

By the above discussion, $w(\theta + 2\pi) = w(\theta)$, so the wrapping function is periodic. From Section 3.1C, we see that 2π is the smallest such value, so w has period 2π .

D. Periodicity of the Trigonometric Functions

Since the trigonometric functions are defined in terms of ω , they are also periodic, and repeat every 2π .

Note: If $\omega(\theta)=(x,y)$, then $\omega(\theta+\pi)=(-x,-y)$ so, in particular, tangent and cotangent actually repeat every π .

E. Summary of Periodicity

Period	
sin	2π
cos	2π
tan	π
cot	π
sec	2π