T3.7 Domain and Range of the Trigonometric Functions

A. Sine and Cosine

1. Domain:

Since $\omega(\theta)$ is defined for any θ with $\cos \theta=x$ and $\sin \theta=y$, there are no domain restrictions.

Thus $\operatorname{dem}(\sin)=(-\infty, \infty)$ and $\operatorname{dem}(\cos)=(-\infty, \infty)$.

2. Range:

The x-coordinate on the circle is smallest at $(-1,0)$, namely -1 ; the x-coordinate on the circle is largest at $(1,0)$, namely 1 .

Hence we can see that rong $($ cos $)=[-1,1]$.

By similar reasoning, we can see that rng $($ sin $)=[-1,1]$.

B. Tangent

1. Domain:

Given ${ }_{w v}(\theta)=(x, y)$, we have $\tan \theta=\frac{y}{x}$. Now $\frac{y}{x}$ is undefined when $x=0$. When does this happen?

Thus $\tan \theta$ is undefined for $\theta=\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots$
What is this in interval notation? To see it, let's plot the allowed values on a number line:

Thus $\operatorname{dem}\left(\tan ^{\tan }\right): \ldots \cup\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right) \cup\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \cup\left(\frac{3 \pi}{2}, \frac{5 \pi}{2}\right) \cup \ldots$
Note: Each interval has an endpoint being an "odd multiple of $\frac{\pi}{2}$ ".

Since $2 k+1$ is the formula that generates odd numbers (for k an integer), we recognize that
$\operatorname{dem}($ tan $)$: union of all intervals of the form $\left(\frac{(2 k+1) \pi}{2}, \frac{(2 k+3) \pi}{2}\right)$, where $k \in \mathbb{Z}$ [k is an integer]

Thus dem $(\tan)=\bigcup_{k \in \mathbb{Z}}\left(\frac{(2 k+1) \pi}{2}, \frac{(2 k+3) \pi}{2}\right)$.

2. Range:

Since $\frac{y}{x}$ can be any number, rug $($ tan $)=(-\infty, \infty)$.

C. Cotangent

1. Domain:

This is similar to tangent. Given $w(\theta)=(x, y)$, we have $\cot \theta=\frac{x}{y}$. Now $\frac{x}{y}$ is undefined when $y=0$. When does this happen?

Thus $\cot \theta$ is undefined for $\theta=\ldots,-2 \pi,-\pi, 0, \pi, 2 \pi, \ldots$

$$
\text { Hence } \operatorname{dem}(c \cot)=\bigcup_{k \in \mathbb{Z}}(k \pi,(k+1) \pi) \text {. }
$$

2. Range:

Now $\frac{x}{y}$ can be anything, so rung(cot) $=(-\infty, \infty)$.

D. Secant

1. Domain:

Given $w(\theta)=(x, y)$, we have $\sec \theta=\frac{1}{x}$. Now $\frac{1}{x}$ is undefined when $x=0$. When does this happen?

So similar to tangent, $\operatorname{dem}($ sec $)=\bigcup_{k \in \mathbb{Z}}\left(\frac{(2 k+1) \pi}{2}, \frac{(2 k+3) \pi}{2}\right)$.

2. Range:

On the right semicircle, x ranges from 1 down to 0 , so $\frac{1}{x}$ ranges from 1 up to ∞.

On the left semicircle, x ranges from near 0 to -1 , so $\frac{1}{x}$ ranges from $-\infty$ up to -1 .

Hence rng $($ sec $)=(-\infty,-1] \cup[1, \infty)$.

E. Cosecant

1. Domain:

Given $w(\theta)=(x, y)$, we have $\csc \theta=\frac{1}{y}$. Now $\frac{1}{y}$ is undefined when $y=0$. When does this happen?

Thus, similar to cotangent, $\operatorname{dem}(\cot)=\bigcup_{k \in \mathbb{Z}}(k \pi,(k+1) \pi)$.

2. Range:

By the same reasoning as for secant, we get ring(csc) $=(-\infty,-1] \cup[1, \infty)$.

F. Summary

	Domain	Range
\sin	$(-\infty, \infty)$	$[-1,1]$
\cos	$(-\infty, \infty)$	$[-1,1]$
\tan	$\bigcup_{k \in \mathbb{Z}}\left(\frac{(2 k+1) \pi}{2}, \frac{(2 k+3) \pi}{2}\right)$	$(-\infty, \infty)$
\cot	$\bigcup_{k \in \mathbb{Z}}(k \pi,(k+1) \pi)$	$(-\infty, \infty)$
\sec	$\bigcup_{k \in \mathbb{Z}}\left(\frac{(2 k+1) \pi}{2}, \frac{(2 k+3) \pi}{2}\right)$	$(-\infty,-1] \cup[1, \infty)$
\csc	$\bigcup_{k \in \mathbb{Z}}(k \pi,(k+1) \pi)$	$(-\infty,-1] \cup[1, \infty)$

Note: To help remember the table, we remember that

1. \tan and \sec are undefined at odd multiples of $\frac{\pi}{2}$.
2. \cot and \csc are undefined at multiples of π.
