T3.7 Domain and Range of the Trigonometric Functions

A. Sine and Cosine

1. Domain:

Since $w(\theta)$ is defined for any θ with $\cos \theta = x$ and $\sin \theta = y$, there are no domain restrictions.

Thus $dom(sin) = (-\infty, \infty)$ and $dom(cos) = (-\infty, \infty)$.

2. Range:

The x-coordinate on the circle is smallest at (-1, 0), namely -1; the x-coordinate on the circle is largest at (1, 0), namely 1.

Hence we can see that rng(cos) = [-1, 1].

By similar reasoning, we can see that rong(sin) = [-1, 1].

B. Tangent

1. Domain:

Given $w(\theta) = (x, y)$, we have $\tan \theta = \frac{y}{x}$. Now $\frac{y}{x}$ is undefined when x = 0. When does this happen?

Thus tan θ is undefined for $\theta = ..., -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, ...$

What is this in interval notation? To see it, let's plot the allowed values on a number line:

Thus dom(tan): ... $\cup \left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2}, \frac{5\pi}{2}\right) \cup \dots$

Note: Each interval has an endpoint being an "odd multiple of $\frac{\pi}{2}$ ".

Since 2k + 1 is the formula that generates odd numbers (for k an integer), we recognize that

dom(tan): union of all intervals of the form $(\frac{(2k+1)\pi}{2}, \frac{(2k+3)\pi}{2})$, where $k \in \mathbb{Z}$ [k is an integer]

Thus dom
$$(tan) = \bigcup_{k \in \mathbb{Z}} \left(\frac{(2k+1)\pi}{2}, \frac{(2k+3)\pi}{2} \right)$$

2. Range:

Since $\frac{y}{x}$ can be any number, $\operatorname{rng}(\operatorname{tan}) = (-\infty, \infty)$.

C. Cotangent

1. Domain:

This is similar to tangent. Given $w(\theta) = (x, y)$, we have $\cot \theta = \frac{x}{y}$. Now $\frac{x}{y}$ is undefined when y = 0. When does this happen?

Thus cot θ is undefined for $\theta=...,-2\pi,-\pi,0,\pi,2\pi,...$

$$\bullet \bullet \bullet \underbrace{\bullet}_{-2\pi} -\pi \quad 0 \quad \pi \quad 2\pi$$

Hence
$$dom(cot) = \bigcup_{k \in \mathbb{Z}} (k\pi, (k+1)\pi).$$

2. Range:

Now $\frac{x}{y}$ can be anything, so $\operatorname{reg}(\operatorname{cot}) = (-\infty, \infty)$.

D. Secant

1. Domain:

Given $w(\theta) = (x, y)$, we have see $\theta = \frac{1}{x}$. Now $\frac{1}{x}$ is undefined when x = 0. When does this happen?

2. Range:

On the right semicircle, x ranges from 1 down to 0, so $\frac{1}{x}$ ranges from 1 up to ∞ . On the left semicircle, x ranges from near 0 to -1, so $\frac{1}{x}$ ranges from $-\infty$ up to -1.

Hence
$$\operatorname{ring}(\operatorname{sec}) = (-\infty, -1] \cup [1, \infty).$$

E. Cosecant

1. Domain:

Given $w(\theta) = (x, y)$, we have $\csc \theta = \frac{1}{y}$. Now $\frac{1}{y}$ is undefined when y = 0. When does this happen?

Thus, similar to cotangent, dom(cot) = $\bigcup_{k \in \mathbb{Z}} (k\pi, (k+1)\pi)$.

2. Range:

By the same reasoning as for secant, we get $\operatorname{reng}(\operatorname{csc}) = (-\infty, -1] \cup [1, \infty).$

F. Summary

	Domain	Range
sin	$(-\infty,\infty)$	[-1, 1]
cos	$(-\infty,\infty)$	[-1, 1]
tan	$\bigcup_{k\in\mathbb{Z}} \left(\frac{(2k+1)\pi}{2}, \frac{(2k+3)\pi}{2}\right)$	$(-\infty,\infty)$
cot	$\bigcup_{k\in\mathbb{Z}} \left(k\pi, (k+1)\pi\right)$	$(-\infty,\infty)$
sec	$\bigcup_{k\in\mathbb{Z}}\left(\frac{(2k+1)\pi}{2},\frac{(2k+3)\pi}{2}\right)$	$(-\infty, -1] \cup [1, \infty)$
csc	$\bigcup_{k\in\mathbb{Z}} \left(k\pi, (k+1)\pi\right)$	$(-\infty, -1] \cup [1, \infty)$

Note: To help remember the table, we remember that

- 1. tan and sec are undefined at odd multiples of $\frac{\pi}{2}$.
- 2. cot and csc are undefined at multiples of π .