T3.4 The Wrapping Function At Multiples of $\frac{\pi}{4}$

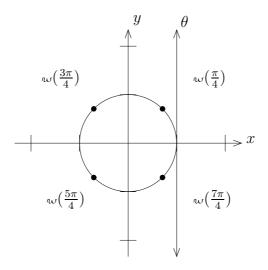
A. Introduction

Evaluating $\omega(\theta)$ for θ being a multiple of π or $\frac{\pi}{2}$ is direct. However, we need a rule for evaluating $\omega(\theta)$ when θ is a multiple of $\frac{\pi}{4}$.

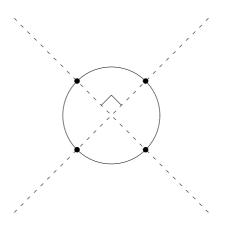
We will derive the $\frac{\pi}{4}$ rule in six easy steps.

B. Derivation of the $\frac{\pi}{4}$ Rule

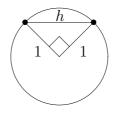
Step 1: Note that if θ is a multiple of $\frac{\pi}{4}$ (lowest terms), then $w(\theta)$ is in one of 4 spots.



Step 2: Drawing diagonal lines through the points yield perpendicular lines, since the points are vertices of a square



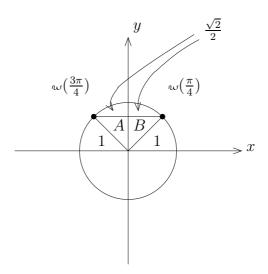
Step 3: Connecting the top two points creates a right triangle with sides having length 1



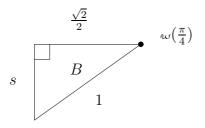
We can use the Pythagorean Theorem to find h:

$$1^2 + 1^2 = h^2 \implies h^2 = 2 \implies h = \sqrt{2}$$
 (since $h \ge 0$)

Step 4: By symmetry, the y axis bisects the triangle into two with top edge length $\frac{\sqrt{2}}{2}$



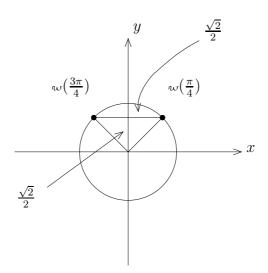
Step 5: We examine triangle B



We can use the Pythagorean Theorem again to find s:

$$s^{2} + \left(\frac{\sqrt{2}}{2}\right)^{2} = 1^{2} \implies s^{2} + \frac{2}{4} = 1 \implies s^{2} = \frac{2}{4} \implies s = \frac{\sqrt{2}}{2}$$

Step 6: We now have the following picture, from which we can read off $w(\frac{\pi}{4})$



Thus $\omega(\frac{\pi}{4})=(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$. By symmetry, we get the $\frac{\pi}{4}$ rule.

C. $\frac{\pi}{4}$ Rule

By symmetry, the x and y coordinates of $\omega(\theta)$ for θ being a multiple of $\frac{\pi}{4}$ are $\frac{\sqrt{2}}{2}$ and $\frac{\sqrt{2}}{2}$ with appropriate signs.

D. Strategy

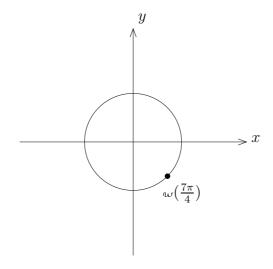
Locate the point on the unit circle, and then use the rule based on the picture.

E. Examples

Example 1: Evaluate
$$\omega(\frac{7\pi}{4})$$

Solution

First locate $w(\frac{7\pi}{4})$ on the unit circle:



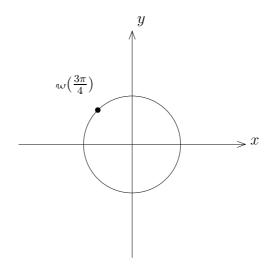
Since we see that to locate the point, we must have positive \boldsymbol{x} and negative \boldsymbol{y} , we have that

Ans
$$\omega(\frac{7\pi}{4}) = (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$$

Example 2: Evaluate $\omega(\frac{3\pi}{4})$

Solution

First locate $w(\frac{3\pi}{4})$ on the unit circle:



Since we see that to locate the point, we must have negative \boldsymbol{x} and positive \boldsymbol{y} , we have that

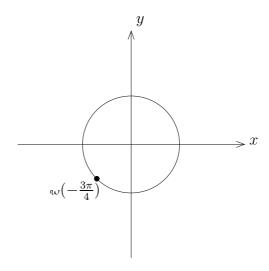
Ans

$$\omega(\frac{3\pi}{4}) = (\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$

Example 3: Evaluate $\omega(-\frac{3\pi}{4})$

Solution

First locate $\omega(-\frac{3\pi}{4})$ on the unit circle:



Since we see that to locate the point, we must have negative \boldsymbol{x} and negative \boldsymbol{y} , we have that

Ans $\omega(-\frac{3\pi}{4}) = (-\frac{\sqrt{2}}{2},$